Enhancing electrochemical reactions in organic synthesis: the impact of flow chemistry.

Chem Soc Rev

Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, SciencePark 904, 1098XH, Amsterdam, The Netherlands.

Published: October 2024

Utilizing electrons directly offers significant potential for advancing organic synthesis by facilitating novel reactivity and enhancing selectivity under mild conditions. As a result, an increasing number of organic chemists are exploring electrosynthesis. However, the efficacy of electrochemical transformations depends critically on the design of the electrochemical cell. Batch cells often suffer from limitations such as large inter-electrode distances and poor mass transfer, making flow cells a promising alternative. Implementing flow cells, however, requires a foundational understanding of microreactor technology. In this review, we briefly outline the applications of flow electrosynthesis before providing a comprehensive examination of existing flow reactor technologies. Our goal is to equip organic chemists with the insights needed to tailor their electrochemical flow cells to meet specific reactivity requirements effectively. We also highlight the application of reactor designs in scaling up electrochemical processes and integrating high-throughput experimentation and automation. These advancements not only enhance the potential of flow electrosynthesis for the synthetic community but also hold promise for both academia and industry.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4cs00539bDOI Listing

Publication Analysis

Top Keywords

flow cells
12
organic synthesis
8
organic chemists
8
flow electrosynthesis
8
flow
7
enhancing electrochemical
4
electrochemical reactions
4
organic
4
reactions organic
4
synthesis impact
4

Similar Publications

Gestational diabetes mellitus (GDM) is a metabolic disorder that arises during pregnancy and heightens the risk of placental dysplasia. Ginsenoside Re (Re) may stabilize insulin and glucagon to regulate glucose levels, which may improve diabetes-associated diseases. This study aims to investigate the mechanism of Re in high glucose (HG)-induced apoptosis of trophoblasts through endoplasmic reticulum stress (ERS)-related protein CHOP/GADD153.

View Article and Find Full Text PDF

Gymnostachyum febrifugum, a less-known ethnomedicinal plant from the Western Ghats of India, is used to treat various diseases and serves as an antioxidant and antibacterial herb. The present study aims to profile the cytotoxic phytochemicals in G. febrifugum roots using GC-MS/MS, in vitro confirmation of cytotoxic potential against breast cancer and an in silico study to understand the mechanism of action.

View Article and Find Full Text PDF

IL-33, a neutrophil extracellular trap-related gene involved in the progression of diabetic kidney disease.

Inflamm Res

January 2025

Department of Nephrology, First Affiliated Hospital of Naval Medical University, Shanghai Changhai Hospital, Shanghai, China.

Background: Chronic inflammation is well recognized as a key factor related to renal function deterioration in patients with diabetic kidney disease (DKD). Neutrophil extracellular traps (NETs) play an important role in amplifying inflammation. With respect to NET-related genes, the aim of this study was to explore the mechanism of DKD progression and therefore identify potential intervention targets.

View Article and Find Full Text PDF

Knockdown of miR-182 changes the sensitivity of triple-negative breast cancer cells to cisplatin.

Nucleosides Nucleotides Nucleic Acids

January 2025

Division of Hematology, Department of Internal Medicine, Medical Faculty, Tekirdağ Namık Kemal University, Tekirdağ, Turkey.

Breast cancer is the most common malignancy that affects women. MicroRNAs (miRNAs) play an essential role in cancer therapy and regulate many biological processes such as cisplatin resistance. The study's objective was to determine whether miR-182 dysregulation was the cause of cisplatin resistance in TNBC cell line MDA-MB-231.

View Article and Find Full Text PDF

Induced pluripotent stem cell (iPSC)-derived natural killer (NK) cells offer an opportunity for a standardized, off-the-shelf treatment with the potential to treat a wider population of acute myeloid leukaemia (AML) patients than the current standard of care. FT538 iPSC-NKs express a high-affinity, noncleavable CD16 to maximize antibody dependent cellular cytotoxicity, a CD38 knockout to improve metabolic fitness, and an IL-15/IL-15 receptor fusion preventing the need for cytokine administration, the main source of adverse effects in NK cell-based therapies. Here, we sought to evaluate the potential of FT538 iPSC-NKs as a therapy for AML through their effect on AML cell lines and primary AML cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!