Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: The vertebrate enteric nervous system (ENS) consists of a series of interconnected ganglia within the gastrointestinal (GI) tract, formed during development following migration of enteric neural crest cells (ENCCs) into the primitive gut tube. Much work has been done to unravel the complex nature of extrinsic and intrinsic factors that regulate processes that direct migration, proliferation, and differentiation of ENCCs. However, ENS development is a complex process, and we still have much to learn regarding the signaling factors that regulate ENCC development.
Results: Here in zebrafish, through transcriptomic, in situ transcript expression, immunohistochemical analysis, and chemical attenuation, we identified a time-dependent role for bone morphogenetic protein (BMP) in the maintenance of Phox2bb enteric progenitor numbers and/or time of differentiation of the progenitor pool. In support of our in silico transcriptomic analysis, we identified expression of a novel ENS ligand-encoding transcript, bmp5, within developmental regions of ENCCs. Through generation of a novel mutant bmp5 and bmp5 crispants, we identified a functional role for BMP5 in proper GI tract colonization, whereby phox2bb enteric progenitor numbers were reduced.
Conclusion: Altogether, this work identified time-dependent roles for BMP signaling and a novel extrinsic factor, BMP5, that is necessary for vertebrate ENS formation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/dvdy.737 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!