Climatic extremes, especially extreme droughts, are occurring more frequently and profoundly impacting biogeochemical processes. However, the relative importance of microbial communities on soil nutrient cycling and community maintenance under natural extreme drought events remains elusive. During a record-breaking drought in the Yangtze River Basin (YRB) in the summer of 2022, we collected ambient soils and drought-affected bare and vegetated soils in ecological buffer zones from two sites with similar soil and vegetation characteristics along the YRB, and examined the relative contribution of soil bacterial communities in supporting multi-nutrient cycling index (MNCI) involving carbon-, nitrate- and phosphorus-cycling and their associations with microbial network. Extreme drought decreased ( < 0.05) bacterial α-diversity but increased MNCI in vegetated soils at both sites, while both remained unchanged ( > 0.05) in bare soils, possibly as a result of vegetation releasing rhizodeposits under drought which selectively recruited bacterial communities. Bacterial community compositions were shifted ( < 0.05) only in vegetated soils, and they exerted more influence than α-diversity on soil MNCI. Notably, the Anaerolineae, identified as a biomarker enriched in vegetated soils, had close associations with enzyme activities and soil MNCI at both sites, suggesting their potential recruitment by vegetation to withstand drought. Furthermore, key ecological clusters (Module 1) in bacterial co-occurrence networks at both sites supported ( < 0.05) higher MNCI, despite no substantial variation in network structure due to drought. Specifically, the most important taxa within Module 1 for predicting soil MNCI revealed by random forest modeling analysis (R = 0.44 - 0.63, < 0.001), such as B1-7BS, SBR1031 and Nocardioides, could be deeply involved in soil nitrogen-cycling, suggesting an essential role of specialized interactions of bacterial communities in maintaining soil multifunctionality. Overall, this study demonstrates that changes in biomarkers and functional taxa under extreme drought may better reflect the biological mechanisms involved in microbial communities impacting ecosystem function, which may aid in forecasting the ecological consequences of ongoing climate change in the ecological buffer zones along the YRB.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11408313 | PMC |
http://dx.doi.org/10.3389/fpls.2024.1460462 | DOI Listing |
Heliyon
January 2025
Department of Hydraulics and Water Resource Engineering, Kombolcha Institute of Technology, KioT, Wollo University, Ethiopia.
This research aims to monitor the hydrological drought trends within the geographical confines of Ethiopia, Sudan, and Egypt in the Blue Nile River Basin. Historical drought circumstances in the basin were analyzed through the utilization of the stream flow drought index (SDI). The long-term historical drought trend was investigated via the application of the Mann - Kendall Sen (MK) test.
View Article and Find Full Text PDFNat Commun
January 2025
Institute of Carbon Neutrality, Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China.
ISME J
January 2025
Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27607, United States.
Long-term climate history can influence rates of soil carbon cycling but the microbial traits underlying these legacy effects are not well understood. Legacies may result if historical climate differences alter the traits of soil microbial communities, particularly those associated with carbon cycling and stress tolerance. However, it is also possible that contemporary conditions can overcome the influence of historical climate, particularly under extreme conditions.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Xinjiang Production and Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, College of Life Science, Tarim University, Alar 843300, China.
Oliv. typically has four kinds of heteromorphic leaves: linear (Li), lanceolate (La), ovate (Ov) and broad ovate (Bo). Heteromorphic leaves help adapt to extreme desert environments and further contribute to protection against land desertification in Northwest China.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Department of Silviculture, Forest Inventory and Forest Management, G.F. Morozov Voronezh State University of Forestry and Technologies, 394087 Voronezh, Russia.
Pedunculate oak ( L.) is widely distributed across Europe and serves critical ecological, economic, and recreational functions. Investigating its responses to stressors such as drought, extreme temperatures, pests, and pathogens provides valuable insights into its capacity to adapt to climate change.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!