Vitrimers are polymer networks with covalent bonds that undergo reversible exchange reactions and rearrange their topology in response to an external stimulus. The temperature-dependent change in viscoelastic properties is conveniently adjusted by selected catalysts. In these thermo-activated systems, the lack in spatial control can be overcome by using photolatent catalysts. Herein, we advance this concept to locally manipulate bond exchange reactions on a single digit microscale level. For this, we synthetize a linkable non-ionic photoacid generator, which is covalently attached to a thiol-click photopolymer. UV induced deprotection of the photoacid yields a strong immobilized sulfonic acid species, which is able to efficiently catalyze transesterification reactions. Covalent attachment of the formed acid prevents migration/leaching processes and enables a precise tuning of material properties. As proof of concept, positive toned microstructures with a resolution of 5 μm are inscribed in thin films using direct two-photon absorption laser writing and subsequent depolymerization. In addition, the possibility to locally reprogram bulk material properties is demonstrated by performing a post-modification reaction with ethylene glycol and carboxylic acids. The Young's modulus is varied between 3.3 MPa and 11.9 MPa giving rise to the versatility of the newly introduced catalysts for creating light processable and transformable materials.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11404296 | PMC |
http://dx.doi.org/10.1039/d4sc04932b | DOI Listing |
Adv Mater
January 2025
Institut National de la Recherche Scientifique (INRS), Centre Énergie Matériaux Télécommunications, Varennes, Québec, J3×1P7, Canada.
Anion exchange membrane fuel cells (AEMFCs) are among the most promising sustainable electrochemical technologies to help solve energy challenges. Compared to proton exchange membrane fuel cells (PEMFCs), AEMFCs offer a broader choice of catalyst materials and a less corrosive operating environment for the bipolar plates and the membrane. This can lead to potentially lower costs and longer operational life than PEMFCs.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Institute of Autmatic Control, University of Kaiserslautern-Landau, 67653 Kaiserslautern, Germany.
Harsh operating conditions imposed by vehicular applications significantly limit the utilization of proton exchange membrane fuel cells (PEMFCs) in electric propulsion systems. Improper/poor management and supervision of rapidly varying current demands can lead to undesired electrochemical reactions and critical cell failures. Among other failures, flooding and catalytic degradation are failure mechanisms that directly impact the composition of the membrane electrode assembly and can cause irreversible cell performance deterioration.
View Article and Find Full Text PDFFoods
December 2024
Department of Marine Bio Food Science, Gangneung-Wonju National University, 7 Jukheon-gil, Gangneung 25457, Gangwon-do, Republic of Korea.
Commercial ascorbyl-6-O-esters (AEs) are composed of saturated fatty acids with relatively high melting points, resulting in limited solubility in lipophilic media. Therefore, a lipase-catalysed synthesis and purification method for ascorbyl-6-O-oleate (AO) was proposed in this study. The esterification synthesis (i.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Laboratório da Interação Planta-Patógeno, Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa 36570-900, Minas Gerais, Brazil.
Maize leaf blight (MLB), caused by the fungus , is an important disease affecting maize production. In order to minimize the use of fungicides in agriculture, nutrient-based resistance inducers may become a promising alternative to manage MLB. The goal of this study was to investigate the potential of Semia (zinc (20%) complexed with a plant-derived pool of polyphenols (10%)) to hamper the infection of maize leaves by by analyzing their photosynthetic performance and carbohydrate and antioxidative metabolism, as well as the expression of defense-related genes.
View Article and Find Full Text PDFMolecules
December 2024
Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
Catalyzing hydrogen evolution reaction (HER) is a key process in high-efficiency proton exchange membrane water electrolysis (PEMWE) devices. To replace the use of Pt-based HER catalyst, tungsten carbide (WC) is one of the most promising non-noble-metal-based catalysts with low cost, replicable catalytic performance, and durability. However, the preparation access to scalable production of WC catalysts is inevitable.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!