Mid-Infrared Photons Alleviate Tinnitus by Activating the KCNQ2 Channel in the Auditory Cortex.

Research (Wash D C)

Senior Department of Otolaryngology Head and Neck Surgery, the 6th Medical Center of Chinese PLA General Hospital, Chinese PLA Medical School, Beijing 100853, China.

Published: September 2024

AI Article Synopsis

  • - Tinnitus is an auditory condition linked to hearing loss and can be influenced by dysfunction in potassium ion channels (KCNQ2 and KCNQ3) in the brain's auditory cortex, leading to significant cognitive and psychological effects.
  • - This study investigated the role of KCNQ2 and KCNQ3 in tinnitus development and explored the use of mid-infrared photons as a potential treatment by examining changes in neuronal behavior in a noise-induced tinnitus model.
  • - Results showed that mid-infrared photons reduced excessive neuronal excitability and improved tinnitus-related symptoms, indicating a promising nonthermal method for managing tinnitus through modulation of KCNQ2 channels.

Article Abstract

Tinnitus is a phantom auditory sensation often accompanied by hearing loss, cognitive impairments, and psychological disturbances in various populations. Dysfunction of KCNQ2 and KCNQ3 channels-voltage-dependent potassium ion channels-in the cochlear nucleus can cause tinnitus. Despite the recognized significance of KCNQ2 and KCNQ3 channels in the auditory cortex, their precise relationship and implications in the pathogenesis of tinnitus remain areas of scientific inquiry. This study aimed to elucidate the pathological roles of KCNQ2 and KCNQ3 channels within the auditory cortex in tinnitus development and examine the therapeutic potential of mid-infrared photons for tinnitus treatment. We utilized a noise-induced tinnitus model combined with immunofluorescence, electrophysiological recording, and molecular dynamic simulation to investigate the morphological and physiological alterations after inducing tinnitus. Moreover, in vivo irradiation was administered to verify the treatment effects of infrared photons. Tinnitus was verified by deficits of the gap ratio with similar prepulse inhibition ratio and auditory brainstem response threshold. We observed an important enhancement in neuronal excitability in the auditory cortex using patch-clamp recordings, which correlated with KCNQ2 and KCNQ3 channel dysfunction. After irradiation with infrared photons, excitatory neuron firing was inhibited owing to increased KCNQ2 current resulting from structural alterations in the filter region. Meanwhile, deficits of the acoustic startle response in tinnitus animals were alleviated by infrared photons. Furthermore, infrared photons reversed the abnormal hyperexcitability of excitatory neurons in the tinnitus group. This study provided a novel method for modulating neuron excitability in the auditory cortex using KCNQ2 channels through a nonthermal effect. Infrared photons effectively mitigated tinnitus-related behaviors by suppressing abnormal neural excitability, potentially laying the groundwork for innovative therapeutic approaches for tinnitus treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11408936PMC
http://dx.doi.org/10.34133/research.0479DOI Listing

Publication Analysis

Top Keywords

auditory cortex
20
infrared photons
20
kcnq2 kcnq3
16
tinnitus
12
mid-infrared photons
8
cortex tinnitus
8
kcnq3 channels
8
channels auditory
8
photons tinnitus
8
tinnitus treatment
8

Similar Publications

Inter- and intra-hemispheric lateralization alterations in auditory verbal hallucinations of Schizophrenia: insights from resting-state functional connectivity.

Eur Arch Psychiatry Clin Neurosci

January 2025

Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 310016, Hunan, China.

Auditory verbal hallucinations (AVHs) in schizophrenia are hypothesized to involve alterations in hemispheric lateralization, but the specific neural mechanisms remain unclear. This study investigated functional intra- and inter-hemispheric connectivity to identify lateralization patterns unique to AVHs. Resting-state fMRI data were collected from 60 schizophrenia patients with persistent AVHs (p-AVH group), 39 patients without AVHs (n-AVH group), and 59 healthy controls (HC group).

View Article and Find Full Text PDF

Background: Exposures to hazardous noise causes irreversible injury to the structures of the inner ear, leading to changes in hearing and balance function with strong links to age-related cognitive impairment. While the role of noise-induced hearing loss in long-term health consequences, such as progression or development of Alzheimer's Disease (AD) has been suggested, the underlying mechanisms and behavioral and cognitive outcomes or therapeutic solutions to mitigate these changes remain understudied. This study aimed to characterize the association between blast exposure, hearing loss, and the progression of AD pathology, and determine the underlying mechanisms.

View Article and Find Full Text PDF

Background: Alzheimer's disease is a progressive form of dementia where cognitive capacities deteriorate due to neurodegeneration. Interestingly, Alzheimer's patients exhibit cognitive fluctuations during all stages of the disease. Though it is thought that contextual factors are critical for unlocking these hidden memories, understanding the neural basis of cognitive fluctuations has been hampered due to the lack of behavioral approaches to dissociate memories from contextual-performance.

View Article and Find Full Text PDF

Background: Prior longitudinal studies among older adults have documented associations between hearing loss and changes in brain morphology. Whether interventions involving hearing aids can reduce age-related atrophy is unknown. A substudy within the Aging and Cognitive Health Evaluation in Elders (ACHIEVE, Clinicaltrials.

View Article and Find Full Text PDF

Neurons in the central nervous system (CNS) lose regenerative potential with maturity, leading to minimal corticospinal tract (CST) axon regrowth after spinal cord injury (SCI). In young rodents, knockdown of PTEN, which antagonises PI3K signalling by hydrolysing PIP3, promotes axon regeneration following SCI. However, this effect diminishes in adults, potentially due to lower PI3K activation leading to reduced PIP3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!