The management of solid waste poses a worldwide obstacle in the pursuit of a sustainable society. This issue has intensified with the increase in waste production caused by rapid population expansion, industrialization, and urbanization. The continuously growing volume of municipal solid waste, particularly the substantial volume of organic waste, along with improper disposal practices, results in the release of greenhouse gases and other harmful airborne substances which simultaneously causes health risks and socioeconomic concerns. This article examines various waste-to-energy (energy production in the form of heat and electricity) concepts as well as waste-to-materials (various value-added materials including biofuel, biochemical, char, bio-oil, soil fertilizer, etc.) methods of converting municipal solid waste into environmentally friendly fuels, which appear to be economically feasible and attractive. It starts with a thorough analysis of the characteristics of municipal solid waste followed by the generation procedure. The study provides an overview of different thermochemical conversion methods including incineration, pyrolysis, co-pyrolysis, liquefaction, hydrothermal carbonization, gasification, combustion for transformation of municipal solid waste, and their recent advancement. The review comprehensively discussed the pros and cons of each method highlighting their strength, weakness, opportunities, and threats to transforming MSW. The current state of municipal solid waste management, including effective dumping and deviation, is comprehensively assessed, along with the prospects and challenges involved. Energy justice concepts and fuzzy logic tool is used to address the selection criteria for choosing the best waste treatment techniques. Moreover, several recommendations are offered to enhance the existing solid waste management system. This review could assist scholars, researchers, authorities, and stakeholders in making informed decisions regarding MSW management.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11408778PMC
http://dx.doi.org/10.1016/j.heliyon.2024.e37105DOI Listing

Publication Analysis

Top Keywords

solid waste
28
municipal solid
24
waste
10
transformation municipal
8
solid
8
waste management
8
municipal
6
evolution thermochemical
4
thermochemical transformation
4
solid wastes
4

Similar Publications

Understanding the performance and microbial succession in nitrogen removal using fermentation liquid as carbon source can provide a practical basis for treating low C/N ratio wastewater. In this study, three typical fermentation liquids of food waste (FW) enriched with lactic acid (LA), propionic acid (PA), and butyric acid (BA) were added to high ammonia and high salt (HAHS) wastewater treatment process. Results showed that effluent TN decreased from 50 mg/L to around 15 mg/L with the influent concentration around 1000 mg/L after adding fermentation liquid enriched with LA and PA.

View Article and Find Full Text PDF

Substrate preference triggers metabolic patterns of indigenous microbiome during initial composting stages.

Bioresour Technol

January 2025

Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China. Electronic address:

Composting organic waste is a sustainable recycling method in agricultural systems, yet the microbial preferences for different substrates and their influence on composting efficiency remain underexplored. Here, 210 datasets of published 16S ribosomal DNA amplicon sequences from straw and manure composts worldwide were analyzed, and a database of 278 bacterial isolates was compiled. Substrate-driven microbiome variations were most prominent during the initial composting stages.

View Article and Find Full Text PDF

Waste polyethylene (WPE) and virgin polyethylene (VPE) (50:50) thermoplastic have been melt-mixed with biochar (BC) made from orange peels at ratios of 5, 10, and 15(Phr) to evaluate how the filler content affected the mechanical, thermal, optical, electrical conductivity, and electromagnetic interference (EMI). γ-rays was applied to the prepared specimens to assess how radiation affected the created biocomposites. From the obtained results, the combination of BC with γ-rays, at doses of up to 100 kGy, with thermoplastic resulted in an enhanced mechanical property, particularly for composites containing 15 Phr of BC added because of its unique structure and excellent dispersion.

View Article and Find Full Text PDF

A magnetic nano-composite coagulant has been designed, originally applied in a specific industrial waste-water treatment, and statistically investigated using Central Composite Design (CCD). The generated polynomial models were utilized to achieve a comprehensive understanding of the impact of each ingredient of PolyAluminum Chloride (PAC), PolyAcrylAmide (PAM), and Iron (III) oxide magnetic nano particles (MNP) regarding optimum limits and conditions. The concentration of each of those components has been considered as the main effective factors, which are found to be significantly correlated, affecting the Total Dissolved Solid (TDS) removal (%), the Total Suspended Solid (TSS) removal (%), and the Turbidity Reduction Rate (TRR) NTU/min.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!