A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Exploring cuproptosis-related molecular clusters and immunological characterization in ischemic stroke through machine learning. | LitMetric

Objective: Ischemic stroke (IS) is a significant health concern with high disability and fatality rates despite available treatments. Immune cells and cuproptosis are associated with the onset and progression of IS. Investigating the interaction between cuproptosis-related genes (CURGs) and immune cells in IS can provide a theoretical basis for IS treatment.

Methods: We obtained IS datasets from the Gene Expression Omnibus (GEO) and employed machine learning to identify CURGs. The diagnostic efficiency of the CURGs was evaluated using receiver operating characteristic (ROC) curves. KEGG and gene set enrichment analysis (GSEA) were also conducted to identify biologically relevant pathways associated with CURGs in IS patients. Single-cell analysis was used to confirm the expression of 19 CURGs, and pathway activity calculations were performed using the AUCell package. Additionally, a risk prediction model for IS patients was developed, and core modules and hub genes related to IS were identified using weighted gene coexpression network analysis (WGCNA). We classified IS patients using a method of consensus clustering.

Results: We established a precise diagnostic model for IS. Enrichment analysis revealed major pathways, including oxidative phosphorylation, the NF-kappa B signaling pathway, the apoptosis pathway, and the Wnt signaling pathway. At the single-cell level, compared to those in non-IS samples, 19 CURGs were primarily overexpressed in the immune cells of IS samples and exhibited high activity in natural killer cell-mediated cytotoxicity, steroid hormone biosynthesis, and oxidative phosphorylation. Two clusters were obtained through consensus clustering. Notably, immune cell types including B cells, plasma cells, and resting NK cells, varied between the two clusters. Furthermore, the red module and hub genes associated with IS were uncovered. The expression patterns of CURGs varied over time.

Conclusion: This study developed a precise diagnostic model for IS by identifying CURGs and evaluating their interaction with immune cells. Enrichment analyses revealed key pathways involved in IS, and single-cell analysis confirmed CURG overexpression in immune cells. A risk prediction model and core modules associated with IS were also identified.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11408831PMC
http://dx.doi.org/10.1016/j.heliyon.2024.e36559DOI Listing

Publication Analysis

Top Keywords

immune cells
20
ischemic stroke
8
machine learning
8
cells
8
curgs
8
enrichment analysis
8
single-cell analysis
8
risk prediction
8
prediction model
8
core modules
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!