Consumption of high-energy-yielding diets, rich in fructose and lipids, is a factor contributing to the current increase in non-alcoholic fatty liver disease prevalence. Gut microbiota composition and short-chain fatty acids (SCFAs) production alterations derived from unhealthy diets are considered putative underlying mechanisms. This study aimed to determine relationships between changes in gut microbiota composition and SCFA levels by comparing rats featuring diet-induced steatohepatitis with control counterparts fed a standard diet. A high-fat high-fructose (HFHF) feeding induced higher body, liver and mesenteric adipose tissue weights, increased liver triglyceride content and serum transaminase, glucose, non-HDL-c and MCP-1 levels. Greater liver malondialdehyde levels and glutathione peroxidase activity were also observed after feeding the hypercaloric diet. Regarding gut microbiota composition, a lowered diversity and increased abundances of bacteria from the sensu stricto 1, , group, , and UBA1819 genera were found in rats featuring diet-induced steatohepatitis, as well as higher isobutyric, valeric and isovaleric acids concentrations. These results suggest that hepatic alterations produced by a hypercaloric HFHF diet may be related to changes in overall gut microbiota composition and abundance of specific bacteria. The shift in SCFA levels produced by this unbalanced diet cannot be discarded as potential mediators of the reported hepatic and metabolic alterations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11406367PMC
http://dx.doi.org/10.1017/gmb.2022.2DOI Listing

Publication Analysis

Top Keywords

gut microbiota
16
microbiota composition
16
short-chain fatty
8
fatty acids
8
feeding hypercaloric
8
hypercaloric diet
8
changes gut
8
scfa levels
8
rats featuring
8
featuring diet-induced
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!