This work, as part of the Georgia Wildland fire Simulation Experiment (G-WISE) campaign, explores the aqueous photolysis of water-soluble brown carbon (W-BrC) in biomass burning aerosols from the combustion of fuel beds collected from three distinct ecoregions in Georgia: Piedmont, Coastal Plain, and Blue Ridge. Burns were conducted under conditions representative of wildfires, which are common unplanned occurrences in Southeastern forests (low fuel moisture content), and prescribed fires, which are commonly used in forest management (higher fuel moisture content). Upon exposure to radiation from UV lamps equivalent to approximately 5 h in the atmosphere, the absorption spectra of all six samples exhibited up to 40% photobleaching in the UV range (280-400 nm) and as much as 30% photo-enhancement in the visible range (400-500 nm). Together, these two effects reduced the absorption Ångström exponent (AAE), a measure of the wavelength dependence of the spectrum, from 6.0-7.9 before photolysis to 5.0-5.7 after. Electrospray ionization ultrahigh-resolution mass spectrometry analysis shows the potential formation of oligomeric chromophores due to aqueous photolysis. This work provides insight into the impacts that aqueous photolysis has on W-BrC in biomass burning aerosols and its dependence on fuel bed composition and moisture content.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11406525PMC
http://dx.doi.org/10.1021/acsestair.4c00016DOI Listing

Publication Analysis

Top Keywords

aqueous photolysis
16
biomass burning
12
moisture content
12
photolysis water-soluble
8
water-soluble brown
8
brown carbon
8
w-brc biomass
8
burning aerosols
8
fuel moisture
8
aqueous
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!