Introduction: Heart rate variability (HRV) is determined by the variation of consecutive cardiac electrical excitations, usually from RR intervals of an EKG. The sequence of intervals is a time series that yields three HRV parameter categories: time domain, frequency domain, and nonlinear. Parameter estimates are based on widely different EKG sample times: short-term (~5-10 minutes), longer (24 hours), and ultra-short (<5 minutes). Five-minute intervals are useful to evaluate intervention effects that change HRV in a single session by comparing pre-to-post values. This approach relies on knowing the minimal detectible change (MDC) that indicates a real change in clinical and research studies. The specific aims of this pilot study were to (1) evaluate HRV power and its spectral distribution among contiguous five-minute intervals, (2) compare the power distribution in a five-minute interval with a full 45-minute assessment, and (3) provide data to aid estimation of the MDC between pre- and post-interventions during a single session.  Methods: Twelve self-reported healthy young adults participated after signing an approved consent. Participation required subjects who had no history of cardiovascular disease or were taking vasoactive substances. Persons with diabetes were not eligible. While subjects were supine, EKG leads were placed, and EKG was recorded for 45 minutes at 1000 samples/sec. The 45 minutes were divided into nine five-minute contiguous intervals, and the spectral density in each was determined. Total power and spectral percentages within each interval were assessed in the very low (VLF, 0.003-0.04 Hz), low (LF, 0.04-0.15 Hz), and high (HF, 0.15-0.4 Hz) frequency bands. These were compared among intervals and to the full 45-minute sample. The MDC was determined by comparing powers in five-minute intervals separated by 10 minutes. The standard error of the measurement (SEME) for each pair was calculated from the square root of the mean square error (√MSE). MSE was based on a two-factor analysis of variance, and MDC was 2×√2×SEME.

Results: Differences in total power and spectral power distribution among intervals were not statistically significant. The total mean power±SD was 4561±1434 ms². The maximum difference in total power was 7.85%. The mean power for the VLF, LF, and HF bands was respectively 1713±1736 ms², 1574±1072 ms², and 1257±1016 ms². The maximum percentage difference in spectral power across all intervals for VLF, LF, and HF was respectively 3.75%, 8.5%, and 7.4%. The percentage of power in the VLF, LF, and HF bands was respectively 37.9%, 36.1%, and 25.9%. The ratios of spectral to total power for VLF, LF, and HF bands were respectively 0.80±0.07, 1.20±0.11, and 1.22±0.10. MDC percentage values were 21.0±4.9% for the HF band, 25.7±1.4% for the LF band, and 30.4±5.5% for the VLF band.

Conclusion: Results offer initial estimates of variations in HRV power in the VLF, LF, and HF bands in contiguous five-minute intervals and estimates of the minimum detectible "real" changes between intervals separated by 10 minutes. The pattern of variation and data are useful in experimental planning in which HRV spectral power changes are assessed subsequent to a short-duration intervention during a single session. MDC values (21.0% in the HF band to 30.4% in the VLF band) provide initial estimates useful for estimating the number of participants needed to evaluate the impact of an intervention on spectral components of HRV.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11410424PMC
http://dx.doi.org/10.7759/cureus.67221DOI Listing

Publication Analysis

Top Keywords

heart rate
8
rate variability
8
spectral power
4
power distribution
4
distribution heart
4
variability contiguous
4
contiguous short-term
4
short-term intervals
4
intervals introduction
4
introduction heart
4

Similar Publications

Background: Mobile health apps have shown promising results in improving self-management of several chronic diseases in patients. We have developed a mobile health app (Cardiomeds) dedicated to patients with heart failure (HF). This app includes an interactive medication list; daily self-monitoring of symptoms, weight, blood pressure, and heart rate; and educational information on HF delivered through various formats.

View Article and Find Full Text PDF

Little is known about the effects of sodium-glucose co-transporter 2 inhibitors (SGLT2i) on atherosclerosis. We aimed to determine if a 90-day intake of Dapagliflozin could improve atherosclerosis biomarkers (namely endothelial function assessed by flow-mediated dilatation [FMD] and carotid intima-media thickness [CIMT]) in diabetic and non-diabetic acute coronary syndrome (ACS) patients when initiated in the early in-hospital phase. ATH-SGLT2i was a prospective, single-center, observational trial that included 113 SGLT2i naive patients who were admitted for ACS and who were prescribed Dapagliflozin at a fixed dose of 10 mg during their hospital stay for either type 2 diabetes or for heart failure.

View Article and Find Full Text PDF

Association Between Surgeon Stress and Major Surgical Complications.

JAMA Surg

January 2025

Center for Surgery and Public Health, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.

Importance: Surgeon stress can influence technical and nontechnical skills, but the consequences for patient outcomes remain unknown.

Objective: To investigate whether surgeon physiological stress, as assessed by sympathovagal balance, is associated with postoperative complications.

Design, Setting, And Participants: This multicenter prospective cohort study included 14 surgical departments involving 7 specialties within 4 university hospitals in Lyon, France.

View Article and Find Full Text PDF

Physiological responses derived from audiovisual perception during assisted driving are associated with the regulation of the autonomic nervous system (ANS), especially in emergencies. However, the interaction of event-related brain activity and the ANS regulating peripheral physiological indicators (i.e.

View Article and Find Full Text PDF

Cardiac computed tomography angiography (CTA) is a valuable tool in the assessment of congenital and acquired cardiac disease in children. The goal of cardiac CTA is to produce images that are free of motion and provide sufficient characterization of the anatomy in question. Given the complexity of pediatric patient characteristics, including patient size, heart rate, breath-holding capability, and variant anatomy, cardiac CTA technique must be individualized to the patient as well as the indication to answer the clinical question while also minimizing radiation exposure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!