AI Article Synopsis

  • The electromagnetic middle-ear implant (MEI) is a new device designed to help with sensorineural and mixed hearing loss, and its effectiveness relies on where the transducer stimulates the ear.
  • Researchers used a human-ear finite element model to evaluate how different stimulation sites (umbo, incus body, incus long process, and stapes) influence the motion of the stapes bone, comparing the results to experimental data.
  • Findings indicate that low and middle frequencies show similar stapes motion with certain stimulation sites compared to normal hearing, while at high frequencies, one site aligns closely with normal hearing responses; additionally, the direction of stimulation affects sound pressure levels differently than motion types.

Article Abstract

The electromagnetic middle-ear implant (MEI) is a new type of hearing device for addressing sensorineural and mixed hearing loss. The hearing compensation effect of the MEI varies depending on the transducer stimulation sites. This paper investigates the impact of transducer stimulation sites on MEI performance by analyzing stapes spatial motion. Firstly, we constructed a human-ear finite element model based on micro-CT scanning and inverse molding techniques. This model was validated by comparing its predictions of stapes spatial motion and cochlear response with experimental data. Then, stimulation force was applied at four common sites: umbo, incus body, incus long process and stapes to simulate the electromagnetic transducer. Results show that at low and middle frequencies, stapes-stimulating and incus-long-process-stimulating produce similar spatial motion to normal hearing; at high frequencies, incus-body-stimulating produces similar results to normal hearing. The equivalent sound pressure level generated by the stapes piston motion is less sensitive to the stimulation direction than that deduced by the stapes rocking motion.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cnm.3871DOI Listing

Publication Analysis

Top Keywords

spatial motion
16
stapes spatial
12
electromagnetic middle-ear
8
middle-ear implant
8
finite element
8
transducer stimulation
8
stimulation sites
8
normal hearing
8
stapes
6
motion
6

Similar Publications

A liquid crystal elastomer (LCE) actuator capable of colorimetric humidity sensing is realized. The designed LCE features acid protonated amino azobenzene side groups in its structure, which endow the actuator with the hygroscopicity and act as the humidity reporter via color changes. Given that the protonated and deprotonated chromophore absorb visible light at different wavelengths, when the protonated LCE is under higher humidity, it absorbs more water that deprotonates azobenzene and leads to a change in color.

View Article and Find Full Text PDF

Surface electromyography (sEMG) data has been extensively utilized in deep learning algorithms for hand movement classification. This paper aims to introduce a novel method for hand gesture classification using sEMG data, addressing accuracy challenges seen in previous studies. We propose a U-Net architecture incorporating a MobileNetV2 encoder, enhanced by a novel Bidirectional Long Short-Term Memory (BiLSTM) and metaheuristic optimization for spatial feature extraction in hand gesture and motion recognition.

View Article and Find Full Text PDF

We present an application of our new theoretical formulation of quantum dynamics, moment propagation theory (MPT) (Boyer et al., J. Chem.

View Article and Find Full Text PDF

Cooperative regulation based on virtual vector triangles asymptotically compressed in multidimensional space for time-varying nonlinear multi-agent systems.

ISA Trans

December 2024

College of Information Science and Engineering, and the National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Northeastern University, Shenyang 110819, China. Electronic address:

This study constructs virtual vector triangles in multidimensional space to address cooperative control issue in time-varying nonlinear multi-agent systems. The distributed adaptive virtual point and its dynamic equations are designed, with this virtual point, the leader, and the follower being respectively defined as the vertices of the virtual vector triangle. The virtual vector edges, decomposed by vectors into coordinate axis components, are organized to form a closed virtual vector triangle by connecting the three vertices with directed vector arrows that are oriented from the tail to the head.

View Article and Find Full Text PDF

Modeling Diffusive Motion of Ferredoxin and Plastocyanin on the PSI Domain of MIT9313.

J Phys Chem B

December 2024

Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, University of Illinois Urbana─Champaign, Urbana, Illinois 61801-3028, United States.

Diffusion of mobile charge carriers, such as ferredoxin and plastocyanin, often constitutes a rate-determining step in photosynthetic energy conversion. The diffusion time scales typically exceed that of other primary bioenergetic processes and remain beyond the reach of direct simulation at the molecular level. We characterize the diffusive kinetics of ferredoxin and plastocyanin upon the photosystem I-rich domain of , the most abundant phototroph on Earth by mass.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!