Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The separation of chiral matter has garnered significant attention due to its wide-ranging applications in biological and chemical processes. In prior researches, particle interactions were predominantly repulsive, but the indiscriminate attraction among particles under attractive interactions makes the separation of mixtures more difficult. The question of whether chiral mixed particles, characterized by attractive effects, can undergo spontaneous separation, remains unresolved. We study a binary mixture of chiral (counterclockwise or clockwise) active particles with attractive interactions. It is demonstrated that attractive chiral particles can undergo spontaneous separation without the aid of any specific strategies. The key factor driving the separation is the attractive interactions, enabling the formation of stable clusters of particles with same chirality. There exist optimal parameters (self-propelled velocity, angular velocity, and packing fraction) at which the separation is optimal. Our results may contribute to a deeper understanding of the mechanisms behind chiral matter separation and potentially catalyze further experimental investigations in this field.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.110.024608 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!