A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Field theory of enzyme-substrate systems with restricted long-range interactions. | LitMetric

Field theory of enzyme-substrate systems with restricted long-range interactions.

Phys Rev E

Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, D-80333 Munich, Germany and Max Planck Institute for the Physics of Complex Systems, D-01138 Dresden, Germany.

Published: August 2024

Enzyme-substrate kinetics form the basis of many biomolecular processes. The interplay between substrate binding and substrate geometry can give rise to long-range interactions between enzyme binding events. Here we study a general model of enzyme-substrate kinetics with restricted long-range interactions described by an exponent -γ. We employ a coherent-state path integral and renormalization group approach to calculate the first moment and two-point correlation function of the enzyme-binding profile. We show that starting from an empty substrate the average occupancy follows a power law with an exponent 1/(1-γ) over time. The correlation function decays algebraically with two distinct spatial regimes characterized by exponents -γ on short distances and -(2/3)(2-γ) on long distances. The crossover between both regimes scales inversely with the average substrate occupancy. Our work allows associating experimental measurements of bound enzyme locations with their binding kinetics and the spatial conformation of the substrate.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.110.024404DOI Listing

Publication Analysis

Top Keywords

long-range interactions
12
restricted long-range
8
enzyme-substrate kinetics
8
correlation function
8
substrate
5
field theory
4
theory enzyme-substrate
4
enzyme-substrate systems
4
systems restricted
4
interactions enzyme-substrate
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!