A hypergraph is a generalization of a graph that arises naturally when attribute-sharing among entities is considered. Compared to graphs, hypergraphs have the distinct advantage that they contain explicit communities and are more convenient to manipulate. An open problem in hypergraph research is how to accurately and efficiently calculate node distances on hypergraphs. Estimating node distances enables us to find a node's nearest neighbors, which has important applications in such areas as recommender system, targeted advertising, etc. In this paper, we propose using expected hitting times of random walks to compute hypergraph node distances. We note that simple random walks cannot accurately compute node distances on highly complex real-world hypergraphs, which motivates us to introduce frustrated random walks (FRW) for this task. We further benchmark our method against DeepWalk, and show that while the latter can achieve comparable results, FRW has a distinct computational advantage in cases where the number of targets is fairly small. For such cases, we show that FRW runs in significantly shorter time than DeepWalk. Finally, we analyze the time complexity of our method, and show that for large and sparse hypergraphs, the complexity is approximately linear, rendering it superior to the DeepWalk alternative.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.110.024314 | DOI Listing |
Neural Netw
January 2025
School of Cyber Science and Engineering, Xi'an Jiaotong University, China. Electronic address:
Detecting anomalies in attributed networks has become a subject of interest in both academia and industry due to its wide spectrum of applications. Although most existing methods achieve desirable performance by the merit of various graph neural networks, the way they bundle node-affiliated multidimensional attributes into a whole for embedding calculation hinders their ability to model and analyze anomalies at the fine-grained feature level. To characterize anomalies from each feature dimension, we propose Eagle, a deep framework based on bipartitE grAph learninG for anomaLy dEtection.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Information Science and Engineering, Northeastern University, China.
Protein-protein interactions (PPI) are crucial for understanding numerous biological processes and pathogenic mechanisms. Identifying interaction sites is essential for biomedical research and targeted drug development. Compared to experimental methods, accurate computational approaches for protein-protein interaction sites (PPIS) prediction can save significant time and costs.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Institute of Intelligent Manufacturing Technology, Shenzhen Polytechnic University, Shenzhen 518000, China.
This paper introduces a novel energy-efficient lightweight, void hole avoidance, localization, and trust-based scheme, termed as Energy-Efficient and Trust-based Autonomous Underwater Vehicle (EETAUV) protocol designed for 6G-enabled underwater acoustic sensor networks (UASNs). The proposed scheme addresses key challenges in UASNs, such as energy consumption, network stability, and data security. It integrates a trust management framework that enhances communication security through node identification and verification mechanisms utilizing normal and phantom nodes.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
College of Life Sciences and Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.
Bone marrow stromal antigen 2 (BST2) is a host-restriction factor that plays multiple roles in the antiviral defense of innate immune responses, including the inhibition of viral particle release from virus-infected cells. BST2 may also be involved in the endothelial adhesion and migration of monocytes, but its importance in the immune system is still unclear. Immune cell adhesion and migration are closely related to the initiation of immune responses.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Computer Science & Engineering, Manipal Institute of Technology Bengaluru, Manipal Academy of Higher Education, Manipal, Karnataka, India.
Conserving energy of sensor nodes and ensuring balanced workloads among them are fundamental concerns in Wireless Sensor Network (WSN) design. Clustering strategies offer a promising avenue to minimize node energy consumption, thereby prolonging network lifespan. Nevertheless, numerous multi-hop routing protocols using clustering technique face the challenge of nodes nearer to the Base Station (BS) depleting their energy faster due to forwarding data from the entire network leading to premature node failure and network partitioning known as 'hotspot problem'.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!