Self-organization of anti-aligning active particles: Waving pattern formation and chaos.

Phys Rev E

Universidad de los Andes, Chile, Avenida Monseñor Álvaro del Portillo No. 12.455, Las Condes, Santiago, Chile.

Published: August 2024

Recently, it has been shown that purely anti-aligning interaction between active particles may induce a finite wavelength instability. The formed patterns display intricate spatiotemporal dynamics, suggesting the presence of chaos. Here, we propose a quasi-one-dimensional simplification of the particle interaction model. This simplified model allows us to deduce amplitude equations that describe the collective motion of the active entities. We show that these equations exhibit chaotic orbits. Furthermore, via direct numerical simulations of the particle's system, we discuss the pertinence of these amplitude equations approach for describing the particle's self-coordinated motions.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.110.024603DOI Listing

Publication Analysis

Top Keywords

active particles
8
self-organization anti-aligning
4
anti-aligning active
4
particles waving
4
waving pattern
4
pattern formation
4
formation chaos
4
chaos purely
4
purely anti-aligning
4
anti-aligning interaction
4

Similar Publications

Exposure to Secondhand Cannabis Smoke Among Children.

JAMA Netw Open

January 2025

Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego.

Importance: The degree that in-home cannabis smoking can be detected in the urine of resident children is unclear.

Objective: Test association of in-home cannabis smoking with urinary cannabinoids in children living at home.

Design, Setting, And Participants: This cross-sectional study used baseline data from Project Fresh Air, a 2012-2016 randomized clinical trial to reduce fine particulate matter levels.

View Article and Find Full Text PDF

Cancer treatments such as surgery and chemotherapy have several limitations, including ineffectiveness against large or persistent tumors, high relapse rates, drug toxicity, and non-specificity of therapy. Researchers are exploring advanced strategies for treating this life-threatening disease to address these challenges. One promising approach is targeted drug delivery using prodrugs or surface modification with receptor-specific moieties for active or passive targeting.

View Article and Find Full Text PDF

Skin represents an effective barrier against the penetration of external agents into the human body. Nevertheless, recent research has shown that small particles, especially in the nanosized range, can not only penetrate through the skin but also work as vectors to transport active molecules such as contrast agents or drugs. This knowledge has opened new perspectives on nanomedicine and controlled drug delivery.

View Article and Find Full Text PDF

Impact of Subsurface Oxygen on CO Charging Energy Changes in Cu Surfaces.

J Phys Chem Lett

January 2025

Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States.

Subsurface oxygen in oxide-derived copper catalysts significantly influences CO activation. However, its effect on the molecular charging process, the key to forming the CO intermediate, remains poorly understood. We employ many-body perturbation theory to investigate the impact of the structural factors induced by the subsurface oxygen on the charged activation of CO.

View Article and Find Full Text PDF

Monomer compounds from natural products are the major source of active pharmaceutical molecules, which provide great opportunities for discovering of new drugs. However, natural products contain a large number of rather complex compounds. It is difficult to obtain high-purity monomer compounds from complex natural products.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!