Ferroelectric nematic liquid crystals are currently being subject to a plethora of investigations since they are of great fundamental interest and could potentially foster promising applications. However, many basic aspects are still poorly understood, among which the problem of the dielectric constant stands out. Ferroelectric nematics have previously been reported to exhibit giant dielectric constants whose value depends on the thickness of the measurement cell, claims that have recently been shown to be the result of an incorrect interpretation of the experimental data. The intrinsic permittivity of these materials has not been determined yet. In this work, we tackle this problem by modeling the dielectric response of the liquid crystal filled cell through an equivalent circuit proposed by Clark et al. [Phys. Rev. Res. 6, 013195 (2024)2643-156410.1103/PhysRevResearch.6.013195] accounting for polarization reorientation and the effect of insulating interfacial layers. We arrive at the conclusion that the perpendicular component of the permittivity ɛ_{⊥} is of the order of 10 in the prototypical ferroelectric nematogen DIO, while the parallel component ɛ_{∥} is of the order of 150. In this way, the dielectric tensor of DIO has been fully determined.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.110.L022701 | DOI Listing |
Food Chem
January 2025
School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China.
This study evaluated the effects of malic acid vacuum microwave preconditioning (MVMP) on lotus root (LR) by examining its moisture content, dielectric properties, microstructure, and starch characteristics, including modifications in starch structure and composition. Dielectric properties and LF-NMR indicated that the dielectric constant (ε') was closely associated to moisture content and state, while changes in water migration depended on microwave power and the dielectric loss factor (ε″). Increased microwave power and malic acid concentration resulted in microstructural damage (indentation and breakage of starch granules) and starch hydrolysis into smaller particles.
View Article and Find Full Text PDFJ Fluoresc
January 2025
Department of Physics, Jnana Bharathi Campus, Bangalore University, Bengaluru, 560056, India.
This investigation delves into the extraction of polyphenols from the flowers of Tabebuia rosea using a basic maceration approach with acetone, ethanol, and methanol as solvents. The spectroscopic analysis of the dye obtained confirms the existence of functional groups in the polyphenol extract. The study also explores optoelectronic, fluorescence, and photometric characteristics associated with polyphenols.
View Article and Find Full Text PDFNanoscale
January 2025
Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Macau SAR 999078, China.
Two-dimensional organic-inorganic perovskites have garnered extensive interest owing to their unique structure and optoelectronic performance. However, their loose structures complicate the elucidation of mechanisms and tend to cause uncertainty and variations in experimental and calculated results. This can generally be rooted in dynamically swinging spacer molecules through two mechanisms: one is the intrinsic geometric steric effect, and the other is related to the electronic effect orbital overlapping and electronic screening.
View Article and Find Full Text PDFHeliyon
July 2024
Department of Physics, University of Lucknow, Lucknow 226007, India.
In this paper, the dielectric behaviour of coconut oil within the frequency range 100 kHz to 30 MHz between temperature 30 °C-50 °C has been observed. The measured values of the dielectric constant and dielectric loss show notable variation with frequency and temperature for pure coconut oil. It is noticed that the dielectric constant (՛) and dielectric loss (՛՛) of coconut oil decreases with increasing temperature.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085 Beijing, China.
Soil bacterial communities are crucial to various ecosystem services, with significant implications for environmental processes and human health. Delivering functional bacterial strains to target locations enhances the preferred ecological features. However, the delivery process is often constrained by limited bacterial transport through low-permeability soil.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!