Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Nonlinear two-dimensional (IGWs) in the atmospheres of the Earth and the Sun are studied. The resulting two-dimensional nonlinear equation has the form of a generalized nonlinear Schrödinger equation with nonlocal nonlinearity, that is, when the nonlinear response depends on the wave intensity at some spatial domain. The modulation instability of IGWs is predicted, and specific cases for the Earth's atmosphere are considered. In a number of particular cases, the instability thresholds and instability growth rates are analytically found. Despite the nonlocal nonlinearity, we demonstrate the possibility of critical collapse of IGWs due to the scale homogeneity of the nonlinear term in spatial variables.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.110.024216 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!