Objective Determination of Site-of-Lesion in Auditory Neuropathy.

Ear Hear

Department of Audiology and Speech Pathology, The University of Melbourne, Parkville, Melbourne, Australia.

Published: September 2024

AI Article Synopsis

  • It involves a case-control design with 10 individuals affected by AN, 7 with neurofibromatosis type 1 (NF1), and 37 control participants, comparing white matter fiber density across different auditory pathways.
  • Results show that the presence and pattern of white matter abnormalities differ based on the underlying cause of AN, and these abnormalities have correlations with certain auditory functional measures like speech perception in noise.

Article Abstract

Objective: Auditory neuropathy (AN), a complex hearing disorder, presents challenges in diagnosis and management due to limitations of current diagnostic assessment. This study aims to determine whether diffusion-weighted magnetic resonance imaging (MRI) can be used to identify the site and severity of lesions in individuals with AN.

Methods: This case-control study included 10 individuals with AN of different etiologies, 7 individuals with neurofibromatosis type 1 (NF1), 5 individuals with cochlear hearing loss, and 37 control participants. Participants were recruited through the University of Melbourne's Neuroaudiology Clinic and the Murdoch Children's Research Institute specialist outpatient clinics. Diffusion-weighted MRI data were collected for all participants and the auditory pathways were evaluated using the fixel-based analysis metric of apparent fiber density. Data on each participant's auditory function were also collected including hearing thresholds, otoacoustic emissions, auditory evoked potentials, and speech-in-noise perceptual ability.

Results: Analysis of diffusion-weighted MRI showed abnormal white matter fiber density in distinct locations within the auditory system depending on etiology. Compared with controls, individuals with AN due to perinatal oxygen deprivation showed no white matter abnormalities ( p > 0.05), those with a neurodegenerative conditions known/predicted to cause VIII cranial nerve axonopathy showed significantly lower white matter fiber density in the vestibulocochlear nerve ( p < 0.001), while participants with NF1 showed lower white matter fiber density in the auditory brainstem tracts ( p = 0.003). In addition, auditory behavioral measures of speech perception in noise and gap detection were correlated with fiber density results of the VIII nerve.

Conclusions: Diffusion-weighted MRI reveals different patterns of anatomical abnormality within the auditory system depending on etiology. This technique has the potential to guide management recommendations for individuals with peripheral and central auditory pathway abnormality.

Download full-text PDF

Source
http://dx.doi.org/10.1097/AUD.0000000000001589DOI Listing

Publication Analysis

Top Keywords

fiber density
20
white matter
16
diffusion-weighted mri
12
matter fiber
12
auditory
10
auditory neuropathy
8
auditory system
8
system depending
8
depending etiology
8
lower white
8

Similar Publications

This study investigates the optical, mechanical, and antimicrobial properties of polypropylene (PP) fibers enhanced with titanium dioxide (TiO) and zinc oxide (ZnO) nanoparticles. Using a Mach-Zehnder interferometric system, we examined the refractive indices, birefringence, and opto-mechanical behavior of blank PP, PP/TiO, and PP/ZnO nanocomposite fibers under various conditions, including different polarization orientations and during cold drawing processes. The 2D Fourier transform algorithm is employed to analyze interferometric data, enabling precise measurements of refractive index profiles and birefringence.

View Article and Find Full Text PDF

This study investigates the prevalence and impacts of suspended atmospheric microplastics (SAMPs) in the coastal metropolitan city of Ningbo in the Yangtze River Delta Region, China. The sampling was conducted at both urban centre and urban-rural fringe areas, near the coast but distant from large urban populations. SAMP abundance ranged from 0.

View Article and Find Full Text PDF

Ion flux regulating with Au-modified separator to realize a homogenize Zn metal deposition.

J Colloid Interface Sci

December 2024

State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China. Electronic address:

Aqueous Zn-ion batteries (AZIBs) have attracted widespread attention owing to the feature of low cost, inherent safety and eco-friendliness. However, the poor reversibility of Zn anode severely hinders the practical applicability of AZIBs. Separator modification is an effective way to functionalize the electrode/electrolyte interface and improve the cycling performance.

View Article and Find Full Text PDF

Purpose: This study aimed to characterize spinal cord microstructure in healthy subjects using high angular resolution diffusion imaging (HARDI) and tractography.

Methods: Forty-nine healthy subjects (18-50 years, divided into 2 age groups) were included in a prospective study. HARDI of the cervical spinal cord were acquired using a 3T MRI scanner with: 64 directions, b‑value: 1000s/mm, reduced field-of-view (zonally magnified oblique multi-slice), and opposed phase-encoding directions.

View Article and Find Full Text PDF

The myotendinous junction (MTJ) is a weak link in the musculoskeletal system. Here, we isolated the tips of single myofibres from healthy human hamstring muscles for confocal microscopy (n=6) and RNAscope in situ hybridisation (n=6) to gain insight into the profiles of cells and myonuclei in this region, in a fibre type manner. A marked presence of mononuclear cells was observed coating the myofibre tips (confirmed by serial block face scanning electron microscopy and cryosection immunofluorescence), with higher numbers for type I (median 29; range 16-63) than type II (16; 9-23) myofibres (p<0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!