Comparative Metabolomics Reveals Changes in the Metabolic Pathways of Ampicillin- and Gentamicin-Resistant .

J Proteome Res

State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.

Published: October 2024

Antibiotic resistance is a major global challenge requiring new treatments and a better understanding of the bacterial resistance mechanisms. In this study, we compared ampicillin-resistant (R-AMP) and gentamicin-resistant (R-GEN) strains with a sensitive strain (ATCC6538) using metabolomics. We identified 109 metabolites; 28 or 31 metabolites in R-AMP or R-GEN differed from those in ATCC6538. Moreover, R-AMP and R-GEN were enriched in five and four pathways, respectively. R-AMP showed significantly up-regulated amino acid metabolism and down-regulated energy metabolism, whereas R-GEN exhibited an overall decrease in metabolism, including carbohydrate, energy, and amino acid metabolism. Furthermore, the activities of the metabolism-related enzymes pyruvate dehydrogenase and TCA cycle dehydrogenases were inhibited in antibiotic-resistant bacteria. Significant decreases in NADH and ATP levels were also observed. In addition, the arginine biosynthesis pathway, which is related to nitric oxide (NO) production, was enriched in both antibiotic-resistant strains. Enhanced NO synthase activity in promoted NO production, which further reduced reactive oxygen species, mediating the development of bacterial resistance to ampicillin and gentamicin. This study reveals that bacterial resistance affects metabolic profile, and changes in energy metabolism and arginine biosynthesis are important factors leading to drug resistance in .

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jproteome.4c00381DOI Listing

Publication Analysis

Top Keywords

bacterial resistance
12
r-amp r-gen
8
amino acid
8
acid metabolism
8
energy metabolism
8
arginine biosynthesis
8
resistance
5
metabolism
5
comparative metabolomics
4
metabolomics reveals
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!