A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Synthesising results of meta-analyses to inform policy: a comparison of fast-track methods. | LitMetric

Statistical synthesis of data sets (meta-analysis, MA) has become a popular approach for providing scientific evidence to inform environmental and agricultural policy. As the number of published MAs is increasing exponentially, multiple MAs are now often available on a specific topic, delivering sometimes conflicting conclusions. To synthesise several MAs, a first approach is to extract the primary data of all the MAs and make a new MA of all data. However, this approach is not always compatible with the short period of time available to respond to a specific policy request. An alternative, and faster, approach is to synthesise the results of the MAs directly, without going back to the primary data. However, the reliability of this approach is not well known. In this paper, we evaluate three fast-track methods for synthesising the results of MAs without using the primary data. The performances of these methods are then compared to a global MA of primary data. Results show that two of the methods tested can yield similar conclusions when compared to global MA of primary data, especially when the level of redundancy between MAs is low. We show that the use of biased MAs can reduce the reliability of the conclusions derived from these methods.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11378786PMC
http://dx.doi.org/10.1186/s13750-023-00309-yDOI Listing

Publication Analysis

Top Keywords

primary data
20
fast-track methods
8
mas
8
synthesise mas
8
compared global
8
global primary
8
data
7
methods
5
approach
5
primary
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!