The Saimaa ringed seal (Pusa hispida saimensis) is a subspecies of ringed seal, landlocked in Lake Saimaa, Finland. The small population of less than 500 seals is facing many human-induced threats, including chemical contaminants. Mercury, in particular, has previously been suggested to be one of the chemicals affecting the viability of this endangered population. We analysed mercury concentrations from placentas and lanugo pup tissues (blubber, brain, kidney, liver, and muscle) to determine current prenatal exposure levels. These pups were found dead in or near birth lairs and were less than 3 months old. Additionally, we used threshold values available in the literature to estimate the potential mercury toxicity to the Saimaa ringed seal. We also determined selenium concentrations for its potential to alleviate the adverse effects of mercury. We further supplemented our study with brain samples collected from various seal age classes. These seals were found dead by either natural causes or by being caught in gillnets. The analysed chemicals were present in all tissues. For lanugo pups, mercury concentrations were the highest in the kidney and liver, whereas the highest selenium to mercury molar ratio was observed in placentas. The toxicity evaluation suggested that, in severe cases, mercury may cause adverse effects in lanugo and older pups. In these cases, the selenium concentrations were low and selenium to mercury ratio was below 1:1 threshold ratio and thus unlikely to provide adequate protection from the adverse effects of mercury. Furthermore, adverse effects are more likely to occur in adult seals, as mercury bioaccumulates, leading to higher concentrations in older individuals. Placental mercury concentrations correlated to those in the livers and muscle tissues of lanugo pups. This, together with the fact that placentas can be collected non-invasively and in good condition, provides a potential novel method for biomonitoring mercury exposure in Saimaa ringed seals.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11467087PMC
http://dx.doi.org/10.1007/s11356-024-34980-6DOI Listing

Publication Analysis

Top Keywords

adverse effects
16
mercury
13
saimaa ringed
12
ringed seal
12
mercury concentrations
12
mercury exposure
8
ringed seals
8
pusa hispida
8
hispida saimensis
8
lake saimaa
8

Similar Publications

Cadmium (Cd) is a toxic heavy metal which induces vascular disorders. Previous studies suggest that Cd in the bloodstream affects vascular endothelial cells (ECs), potentially contributing to vascular-related diseases. However, the molecular mechanisms of effects of Cd on ECs remain poorly understood.

View Article and Find Full Text PDF

Bisphenol A (BPA), an environmental endocrine disrupting chemical, is one of the most widely used chemicals in the world and is widely distributed in the external environment, specifically in food, water, dust, and soil. BPA exposure is associated with abnormal cognitive behaviors. However, the underlying mechanism remains unclear.

View Article and Find Full Text PDF

CPR related injuries of the chest wall: direct and indirect fractures.

Eur J Trauma Emerg Surg

January 2025

Department of Trauma and Orthopedic Surgery, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany.

Background: Rib and sternum fractures are common injuries associated with cardiopulmonary resuscitation (CPR). The fracture mechanism is either direct by application of force on sternum and anterior ribs or indirect by bending through compression of the thorax. The aim of this study was to determine morphologies of rib fractures after CPR and to reevaluate prior findings on fracture localisation, type and degree of dislocation.

View Article and Find Full Text PDF

The kinetically-derived maximal dose (KMD) is defined as the maximum external dose at which kinetics are unchanged relative to lower doses, e.g., doses at which kinetic processes are not saturated.

View Article and Find Full Text PDF
Article Synopsis
  • Recent research indicates that blocking the RIPK1/RIPK3/MLKL necrosome can help reduce inflammatory pain linked to conditions like demyelination in the central nervous system.
  • This study tests necrostatin-1s (Nec-1s), a specific RIPK1 inhibitor, on LPS-induced inflammatory pain in male mice, assessing pain sensitivity through hot plate tests and examining related protein changes.
  • Results show that Nec-1s not only prevents LPS-induced pain relief but also reverses the activation of key proteins and signals involved in inflammation and demyelination, suggesting that RIPK1 inhibitors could be a promising treatment for managing inflammatory pain.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!