The inbred Babraham pig serves as a valuable biomedical model for research due to its high level of homozygosity, including in the major histocompatibility complex (MHC) loci and likely other important immune-related gene complexes, which are generally highly diverse in outbred populations. As the ability to control for this diversity using inbred organisms is of great utility, we sought to improve this resource by generating a long-read whole genome assembly and transcriptome atlas of a Babraham pig. The genome was de novo assembled using PacBio long reads and error-corrected using Illumina short reads. Assembled contigs were then mapped to the porcine reference assembly, Sscrofa11.1, to generate chromosome-level scaffolds. The resulting TPI_Babraham_pig_v1 assembly is nearly as contiguous as Sscrofa11.1 with a contig N50 of 34.95 Mb and contig L50 of 23. The remaining sequence gaps are generally the result of poor assembly across large and highly repetitive regions such as the centromeres and tandemly duplicated gene families, including immune-related gene complexes, that often vary in gene content between haplotypes. We also further confirm homozygosity across the Babraham MHC and characterize the allele content and tissue expression of several other immune-related gene complexes, including the antibody and T cell receptor loci, the natural killer complex, and the leukocyte receptor complex. The Babraham pig genome assembly provides an alternate highly contiguous porcine genome assembly as a resource for the livestock genomics community. The assembly will also aid biomedical and veterinary research that utilizes this animal model such as when controlling for genetic variation is critical.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11496355PMC
http://dx.doi.org/10.1007/s00251-024-01355-7DOI Listing

Publication Analysis

Top Keywords

genome assembly
16
babraham pig
16
immune-related gene
12
gene complexes
12
assembly transcriptome
8
transcriptome atlas
8
inbred babraham
8
pig genome
8
assembly
7
genome
5

Similar Publications

Population structure and genetic diversity of Toona sinensis revealed by whole-genome resequencing.

BMC Genom Data

January 2025

Key Laboratory of State Forestry and Grassland Administration Conservation and Utilization of Warm Temperate Zone Forest and Grass Germplasm Resources, Shandong Provincial Center of Forest and Grass Germplasm Resources, Ji'nan, 250103, Shandong, China.

Objectives: Toona sinensis, commonly known as Chinese toon, is a perennial woody plant with significant economic and ecological importance. This study employed whole-genome resequencing of 180 T. sinensis samples collected from Shandong to analyze genetic variation and diversity, ultimately identifying 18,231 high-quality SNPs after rigorous quality control and linkage disequilibrium pruning.

View Article and Find Full Text PDF

Background: Tea-oil Camellia within the genus Camellia is renowned for its premium Camellia oil, often described as "Oriental olive oil". So far, only one partial mitochondrial genomes of Tea-oil Camellia have been published (no main Tea-oil Camellia cultivars), and comparative mitochondrial genomic studies of Camellia remain limited.

Results: In this study, we first reconstructed the entire mitochondrial genome of C.

View Article and Find Full Text PDF

Background: The advent of next generation sequencing technologies has enabled a surge in the number of whole genome sequences in public databases, and our understanding of the composition and evolution of bacterial genomes. Besides model organisms and pathogens, some attention has been dedicated to industrial bacteria, notably members of the Lactobacillaceae family that are commonly studied and formulated as probiotic bacteria. Of particular interest is Lactobacillus acidophilus NCFM, an extensively studied strain that has been widely commercialized for decades and is being used for the delivery of vaccines and therapeutics.

View Article and Find Full Text PDF

The highly allo-autopolyploid modern sugarcane genome and very recent allopolyploidization in Saccharum.

Nat Genet

January 2025

Center for Genomics, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China.

Modern sugarcane, a highly allo-autopolyploid organism, has a very complex genome. In the present study, the karyotype and genome architecture of modern sugarcane were investigated, resulting in a genome assembly of 97 chromosomes (8.84 Gb).

View Article and Find Full Text PDF

Nucleosome is the basic structural unit of the genome. During processes like DNA replication and gene transcription, the conformation of nucleosomes undergoes dynamic changes, including DNA unwrapping and rewrapping, as well as histone disassembly and assembly. However, the wrapping characteristics of nucleosomes across the entire genome, including region-specificity and their correlation with higher-order chromatin organization, remains to be studied.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!