A novel ormycovirus isolated from the plant-pathogenic fungus Fusarium graminearum.

Arch Virol

State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Key Laboratory of Biotechnology in Plant Protection of MOA of China, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China.

Published: September 2024

AI Article Synopsis

Article Abstract

In this study, we identified a novel mycovirus, Fusarium graminearum ormycovirus 1 (FgOV1), from the pathogenic fungus Fusarium graminearum. The virus has two RNA segments, RNA1 and RNA2, with lengths of 2,591 and 1,801 nucleotides, respectively, excluding the polyA tail. Each segment contains a single open reading frame (ORF). The ORF in RNA1 encodes an RNA-dependent RNA polymerase, while the ORF in RNA2 encodes a hypothetical protein. Phylogenetic analysis showed that FgOV1 belongs to the gammaormycovirus clade, whose members are related to betaormycoviruses. To our knowledge, this is the first report of an ormycovirus in Fusarium graminearum.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00705-024-06131-2DOI Listing

Publication Analysis

Top Keywords

fusarium graminearum
16
fungus fusarium
8
novel ormycovirus
4
ormycovirus isolated
4
isolated plant-pathogenic
4
plant-pathogenic fungus
4
fusarium
4
graminearum
4
graminearum study
4
study identified
4

Similar Publications

The Effector Protease FgTPP1 Suppresses Immune Responses and Facilitates Fusarium Head Blight Disease.

Mol Plant Microbe Interact

January 2025

USDA-ARS Crop Production and Pest Control Research Unit, West Lafayette, Indiana, United States;

Most plant pathogens secrete effector proteins to circumvent host immune responses, thereby promoting pathogen virulence. One such pathogen is the fungus , which causes Fusarium Head Blight (FHB) disease on wheat and barley. Transcriptomic analyses revealed that expresses many candidate effector proteins during early phases of the infection process, some of which are annotated as proteases.

View Article and Find Full Text PDF

Fusarium head blight, caused by , continues to be one of the most important and devastating fungal diseases on cereal grains including wheat, barley, and oat crops. produces toxic secondary metabolites that include trichothecene type A and type B mycotoxins. There are many variants of these toxins that are produced, and in the early 2010s, a novel type A trichothecene mycotoxin known as 3ANX (7-α hydroxy,15-deacetylcalonectrin) and its deacetylated product NX (7-α hydroxy, 3,15-dideacetylcalonectrin) were identified in Minnesota, USA.

View Article and Find Full Text PDF

Fusarium Head Blight in Argentina, a Profile of Produced Mycotoxins and a Biocontrol Strategy in Barley During Micro-Malting Process.

Toxins (Basel)

January 2025

Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto (UNRC), Ruta Nacional 36 Km 601, Río Cuarto 5800, Argentina.

Barley ( L.) is the second winter crop in Argentina. In the national market, grains are mainly destined to produce malt for beer manufacture.

View Article and Find Full Text PDF

fungi are widespread pathogens of food crops, primarily associated with the formation of mycotoxins. Therefore, effective mitigation strategies for these toxicogenic microorganisms are required. In this study, the potential of pulsed electric field (PEF) as an advanced technology of increasing use in the food processing industry was investigated to minimize the viability of pathogens and to characterize the PEF-induced changes at the metabolomic level.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!