Thermochromic coatings hold promise in reducing building energy consumption by dynamically regulating the heat gain of windows, which are often regarded as less energy-efficient components, across different seasons. Vanadium dioxide (VO) stands out as a versatile thermochromic material for smart windows owing to its reversible metal-to-insulator transition (MIT) alongside correlated structural and optical properties. In this review, we delve into recent advancements in the phase-change VO-based thermochromic coatings for smart windows, spanning from the macroscopic crystal level to the microscopic structural level (including elemental doping and micro/nano-engineering), as well as advances in controllable fabrication. It is notable that hybridizing functional elements/materials (e.g., W, Mo/SiO, TiN) with VO in delicate structural designs (e.g., core-shell, optical cavity) brings new degrees of freedom for controlling the thermochromic properties, including the MIT temperature, luminous transmittance, solar-energy modulation ability and building-relevant multi-functionality. Additionally, we provide an overview of alternative chromogenic materials that could potentially complement or surpass the intrinsic limitations of VO. By examining the landscape of emerging materials, we aim to broaden the scope of possibilities for smart window technologies. We also offer insights into the current challenges and prospects of VO-based thermochromic smart windows, presenting a roadmap for advancing this field towards enhanced energy efficiency and sustainable building design. In summary, this review innovatively categorizes doping strategies and corresponding effects of VO, underscores their crucial NIR-energy modulation ability for smart windows, pioneers a theoretical analysis of inverse core-shell structures, prioritizes practical engineering strategies for solar modulation in VO films, and summarizes complementary chromogenic materials, thus ultimately advancing VO-based smart window technologies with a fresh perspective.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11410829 | PMC |
http://dx.doi.org/10.1038/s41377-024-01560-9 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!