Aliphatic diols such as ethylene and propylene glycol are the key products in the chemical industry for manufacturing polymers. The synthesis of these molecules usually implies sequential processes, including epoxidation of olefins using hydrogen peroxide or oxygen with subsequent hydrolysis to glycols. Direct hydroxylation of olefins by cheap and green oxidants is an economically attractive and environmentally friendly route for the synthesis of diols. Here, we report a photocatalytic reaction for the dihydroxylation of ethylene and propylene to their glycols at room temperature using water as the oxidant. The photocatalyst contains Pd clusters stabilized by sub-nanometric polyoxometalate with TiO as the host material. Under light irradiation, it results in production rates of ethylene glycol and propylene glycols of 146.8 mmol·g·h and 28.6 mmol·g·h with liquid-phase selectivities of 63.3 % and 80.0 %, respectively. Meanwhile, green hydrogen derived from water is produced as another valuable product. Combined spectroscopy investigation suggests that the reaction proceeds via π-bonded adsorption of olefins over Pd clusters with hydroxylation by hydroxyl radicals formed by photocatalytic dissociation of water.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11410969 | PMC |
http://dx.doi.org/10.1038/s41467-024-52461-9 | DOI Listing |
Sci Rep
January 2025
Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.
Spermatogenesis is one of the most complex processes of cell differentiation and its failure is a major cause of male infertility. Therefore, a proper model that recapitulates spermatogenesis in vitro has been long sought out for basic and clinical research. Testis organ culture using the gas-liquid interphase method has been shown to support spermatogenesis in mice and rats.
View Article and Find Full Text PDFBiotechniques
January 2025
Biomedical Engineering, The University of Arizona, Tucson, AZ, USA.
Current dorsal skin flap window chambers with flat glass windows are compatible with optical coherence tomography (OCT) and multiphoton microscopy (MPM) imaging. However, light sheet fluorescence microscopy (LSFM) performs best with a cylindrical or spherical sample located between its two 90° objectives and when all sample materials have the same index of refraction (). A modified window chamber with a domed viewing window made from fluorinated ethylene propylene (FEP), with n similar to water and tissue, was designed.
View Article and Find Full Text PDFNat Commun
December 2024
Key Laboratory of Advanced Polymeric Materials of Shanghai, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, P. R. China.
As integrated circuits have developed towards the direction of complexity and miniaturization, there is an urgent need for low dielectric constant materials to effectively realize high-fidelity signal transmission. However, there remains a challenge to achieve ultralow dielectric constant and ultralow dielectric loss over a wide temperature range, not to mention having excellent thermal conductivity and processability concurrently. We herein prepare dual-linker freestanding covalent organic framework films with tailorable fluorine content via interfacial polymerization.
View Article and Find Full Text PDFBiomimetics (Basel)
November 2024
Ocean and Maritime Digital Technology Research Division, Korea Research Institute of Ships and Ocean Engineering, Daejeon 34103, Republic of Korea.
Although the Doppler velocity log is widely applied to measure underwater fluid flow, it requires high power and is inappropriate for measuring low flow velocity. This study proposes a fluid flow sensor that utilizes optical flow sensing. The proposed sensor mimics the neuromast of a fish by attaching a phosphor to two pillar structures (A and B) produced using ethylene propylene diene monomer rubber.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
School of Textile Science and Engineering, State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China.
Polyimide-based triboelectric nanogenerators (TENGs) capable of energy harvesting in harsh environments (high temperature and high humidity) have been extensively studied. However, most polyimide-based TENGs have the disadvantages of poor air permeability and poor softness. In this study, a core-shell yarn with good air permeability, softness, and high electric output performance was successfully prepared by conjugate electrospinning.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!