Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Axial coordination engineering has emerged as an effective strategy to regulate the catalytic performance of metal-N-C materials for oxygen reduction reaction (ORR). However, the ORR mechanism and activity changes of their active centers modified by axial ligands are still unclear. Here, a comprehensive investigation of the ORR on a series of FeN-L moieties (L stands for an axial ligand) is performed using advanced density functional theory (DFT) calculations. The axial ligand has a substantial effect on the electronic structure and catalytic activity of the FeN center. Specially, FeN-CH is screened as a promising active moiety with superior ORR activity, as further revealed by constant-potential calculations and kinetic analysis. The enhanced activity is attributed to the weakened *OH adsorption caused by the altered electronic structure. Moreover, microkinetic modeling shows that at pH=1, FeN-CH possesses an impressive theoretical half-wave potential of ~1.01 V, superior to the pristine Fe-N-C catalysts (~0.88 V) calculated at the same level. These findings advance the understanding of the ORR mechanism of FeN-L and provide guidance for optimizing the ORR performance of single-metal-atom catalysts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.202402869 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!