The synthesis of single-crystalline and robust pyrazolate metal-organic frameworks (Pz-MOFs) capable of facilitating challenging organic transformations is fundamentally significant in catalysis. Here we demonstrate a metal-node-based catalytic site anchoring strategy by synthesizing a single-crystalline and robust Pz-MOF (PCN-1004). PCN-1004 features one-dimensional (1D) copper-Pz chains interconnected by well-organized ligands, forming a porous three-dimensional (3D) network with two types of 1D open channels. Notably, PCN-1004 displays exceptional stability in aqueous solutions across a broad pH range (1 to 14), attributed to the robust copper-Pz coordination bond. Significantly, PCN-1004 functions as an outstanding catalyst in cross dehydrogenative coupling reactions for constructing C-O/C-S bonds, even in the absence of directing groups, achieving yields of up to ~99 %, with long cycle lives and high substrate compatibility. PCN-1004 outperforms all previously reported porphyrin-based homogeneous and heterogeneous catalysts. Control experiments and computations elucidate the pivotal catalytic role of the copper-Pz chains and reveal a free radical pathway for the reaction. This work not only demonstrates the successful implementation of a metal-node-based catalytic site anchoring strategy for the efficient catalysis of challenging organic transformations but also highlights the synergistic effect of a robust framework, 1D open channels, and active sites in enhancing catalytic efficiency within MOFs.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202414271DOI Listing

Publication Analysis

Top Keywords

pyrazolate metal-organic
8
single-crystalline robust
8
challenging organic
8
organic transformations
8
metal-node-based catalytic
8
catalytic site
8
site anchoring
8
anchoring strategy
8
copper-pz chains
8
open channels
8

Similar Publications

Sulfur hexafluoride (SF), widely used in electric power systems, is one of the most potent greenhouse gases. Efficient separation of SF/N by adsorptive separation technology based on porous materials is of great significance in the industry yet remains a daunting challenge. Herein, a novel strategy is introduced to construct unique pore channels with multiple SF nano-traps by precisely selecting bipyrazole ligands to design the nonpolar surface of microporous metal-organic frameworks (MOFs), which significantly enhances the material's affinity for SF.

View Article and Find Full Text PDF

Covalent organic frameworks hybridized polymeric high internal phase emulsions with amphiphilicity for extraction of trace bisamide insecticides in food samples.

Mikrochim Acta

December 2024

Guangxi Colleges and Universities Key Laboratory of Food Safety and Detection, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, Guangxi, China.

Polymeric high internal phase emulsions decorated with covalent organic frameworks (polyHIPEs-COFs) were synthesized and used as the sorbent for cyantraniliprole and chlorantraniliprole. Pickering high internal phase emulsions stabilized by covalent organic frameworks solid particles and liquid surfactants (Span80 and polyvinylpyrrolidone) endow the composites with open-cell structures and superwettability. The amphiphilicity and open-cell structures enable rapid adsorption and desorption for cyantraniliprole and chlorantraniliprole, and the solid-phase extraction process can be completed in 5 min.

View Article and Find Full Text PDF

Stable Microporous Metal-Organic Framework Based on Tritopic Pyrazolate Ligand for Xe/Kr Separation.

Inorg Chem

December 2024

Jiangsu Key Laboratory of Biomedical Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.

Pyrazolate ligands, renowned for their potent electron-donating capabilities, have emerged as promising building blocks for the construction of stable metal-organic frameworks (MOFs) particularly when paired with late transition metals. While a plethora of diverse MOFs have been meticulously crafted using ditopic pyrazolate ligands, the realm of multidentate pyrazolate-based MOF structures remains relatively unexplored. This research unveils a notable achievement in the synthesis of a novel three-dimensional microporous MOF, characterized by its single-crystal form, meticulously assembled from a tritopic pyrazole ligand and cobalt ions.

View Article and Find Full Text PDF

Iron-based nitrogen-rich metal-organic framework structure for activation of hydrogen peroxide and peroxymonosulfate for ultra-efficient tetracycline degradation.

J Colloid Interface Sci

February 2025

International Institute of Rivers and Ecological Security, Yunnan University, Kunming 650091, Yunnan, China; School of Chemical Science and Technology, Yunnan University, Kunming 650091, Yunnan, China. Electronic address:

Fe-based metal-organic frameworks (Fe-MOFs) have been used to catalyze the degradation of organic pollutants; however, the underlying mechanism remains unclear. In this study, we prepared Fe-MOF catalysts featuring a three-dimensional ordered structure and active Fe-N coordination centers using self-designed polypyrazole compounds as ligands. Because the coordination centers are similar to the classical single-atom Fe-N active neutral structure, Fe-MOFs exhibit excellent performance in activating hydrogen peroxide (HO) and peroxymonosulfate (PMS) for the degradation of antibiotics.

View Article and Find Full Text PDF

Indoor air pollution is one of the major threads in developed countries, notably due to high concentrations of formaldehyde, a harmful molecule difficult to eliminate. Addressing this purification challenge while adhering to the principles of sustainable development requires the use of innovative, advanced sustainable materials. Here we show that by combining state-of-the-art spectroscopic techniques with density-functional theory molecular simulations, we have developed an advantageous mild chemisorption synergistic mechanism using porous metal (III or IV) pyrazole- di-carboxylate based metal-organic framework (MOF) to trap formaldehyde in a reversible manner, without incurring significant energy penalties for regeneration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!