Introduction: Heavy metals exposure is a known carcinogen in humans. The impact of heavy metals in the pathogenesis of renal cell carcinoma (RCC) is unclear with scant available literature. Though previous studies have evaluated the role of heavy metals in RCC, majority of those studies have evaluated either single or few heavy metals in urine. None of the prior studies have evaluated an extensive panel of heavy metals in blood, urine, and tissue in the same patient along with the serum oxidation status and gene expression to establish a cause-and-effect relationship. This study aims to evaluate the role of extensive panel of heavy metals, oxidative status, and gene expression in RCC.

Methodology: This observational study recruited RCC patients who visited our tertiary care centre from 2019 to 2023. Age matched healthy volunteers were included as controls. Blood, urine, and tissue samples (tumor and adjacent normal tissue) were collected from RCC patients. Levels of arsenic, copper, manganese, selenium, cadmium, lead, and mercury were measured in each of the samples. Serum oxidative stress markers like glutathione peroxidase (GPX), lipid peroxidase (LPO), and superoxide dismutase (SOD) were measured. Genetic expression of Von Hippel-Lindau (VHL), catalase (CAT), superoxide dismutase (SOD1), and glutathione peroxidase (GPX1) genes were measured in the tumor tissue and adjacent normal parenchyma.

Results: 150 cases and 150 age matched controls were enrolled. RCC cases had elevated blood levels of arsenic (P = 0.02), copper (P = 0.01), manganese (P < 0.001), cadmium (P < 0.001), lead (P < 0.001), and mercury (P = 0.02) compared to controls. Urine levels of selenium (P = 0.02), mercury (P = 0.03), and lead (P = 0.04) were higher in cases. Reduced levels of serum GPx (P = 0.02) and higher levels of LPO (P = 0.04) were detected in cases. Elevated levels of copper (P = 0.03), manganese (P = 0.002), selenium (P < 0.001), and cadmium (P < 0.001) were found in the adjacent normal parenchyma compared to the tumor tissue. VHL (P = 0.03) and oxidative stress gene expressions were lower in the tumour tissue compared to the normal parenchyma.

Conclusion: Elevated levels of heavy metals in the blood, urine, tissue, and imbalance in the serum oxidative status along with downregulated tumor suppressor VHL and oxidative stress genes in the tumor tissues likely explain the carcinogenic role of heavy metals in RCC. Environmental exposure is the main cause of heavy metal toxicity. Mitigating the environmental exposure of heavy metals and thereby their toxicity might play a role in cancer prevention.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.urolonc.2024.08.015DOI Listing

Publication Analysis

Top Keywords

heavy metals
40
oxidative stress
16
studies evaluated
12
blood urine
12
urine tissue
12
adjacent normal
12
metals
10
heavy
10
impact heavy
8
metals oxidative
8

Similar Publications

Studies of in situ plant response and adaptation to complex environmental stresses, are crucial for understanding the mechanisms of formation and functioning of ecosystems of anthropogenically transformed habitats. We study short- and long-term responses of photosynthetic apparatus (PSA) and anti-oxidant capacity to complex abiotic stresses of common plants Calamagrostis epigejos and Solidago gigantea in semi-natural (C) and heavy metal contaminated habitats (LZ). We found significant differences in leaf pigment content between both plant species growing on LZ plots and their respective C populations.

View Article and Find Full Text PDF

Association between blood manganese and cardiovascular diseases among U.S. adult population.

Sci Rep

December 2024

National Clinical Research Center for Cardiovascular Diseases, Fuwai Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, National Center for Cardiovascular Diseases, Beijing, 102300, China.

Manganese (Mn) is a known toxicant and an essential trace element, and it plays an important role in various mechanisms in relation to cardiovascular health. However, epidemiological studies of the association between blood Mn and cardiovascular diseases (CVD) among U.S.

View Article and Find Full Text PDF

The study presents findings from physico-chemical and elemental analyses of fresh faecal matter from a residential apartment in Thiruvananthapuram, Kerala, India. Samples were taken every 8-10 days over 4 months to account for variability and establish baseline data. The study also examines the influence of dietary patterns and toilet cleaners on faecal sludge properties.

View Article and Find Full Text PDF

Intracerebral hemorrhage (ICH) is a common cerebrovascular disease characterized by a high incidence, disability rate, and mortality. Epigallocatechin gallate (EGCG), a key catechin compound found in green tea, has received increasing attention for its potential neuroprotective and therapeutic effects in neurological disorders. Studies have indicated that EGCG may influence various signaling pathways and molecular targets, including the inhibition of oxidative stress, reduction of inflammatory responses, suppression of cell apoptosis, regulation of cell survival, and enhancement of autophagy.

View Article and Find Full Text PDF

ICEmST contributes to colonization of Salmonella in the intestine of piglets.

Sci Rep

December 2024

Division of Zoonosis Research, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan.

Salmonella enterica serovar 4,[5],12:i:- sequence type 34 (ST34) has recently become a global concern for public and animal health. The acquisition of mobile genetic element ICEmST, which contains two copper tolerance gene clusters, cus and pco, influences the epidemic success of this clone. Copper is used as a feed additive in swine at levels that potentially lead to selection pressure for Enterobacteriaceae; however, it remains unclear whether the copper tolerance system of ICEmST functions in vivo.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!