The paternal environment prior to conception has been demonstrated to influence offspring physiology and behavior, with the sperm epigenome (including noncoding RNAs) proposed as a potential facilitator of non-genetic inheritance. Whilst the maternal gut microbiome has been established as an important influence on offspring development, the impact of the paternal gut microbiome on offspring development, health and behavior is largely unknown. Gut microbiota have major influences on immunity, and thus we hypothesized that they may be relevant to paternal immune activation (PIA) modulating epigenetic inheritance in mice. Therefore, male C57BL/6J mice (F0) were orally administered non-absorbable antibiotics via drinking water in order to substantially deplete their gut microbiome. Four weeks after administration of the antibiotics (gut microbiome depletion), F0 male mice were then mated with naïve female mice. The F1 offspring of the microbiome-depleted males had reduced body weight as well as altered gut morphology (shortened colon length). F1 females showed significant alterations in affective behaviors, including measures of anxiety and depressive-like behaviors, indicating altered development. Analysis of small noncoding RNAs in the sperm of F0 mice revealed that gut microbiome depletion is associated with differential expression of 8 different PIWI-interacting RNAs (piRNAs), each of which has the potential to modulate the expression of multiple downstream gene targets, and thus influence epigenetic inheritance and offspring development. This study demonstrates that the gut-germline axis influences sperm small RNA profiles and offspring physiology, with specific impacts on offspring affective and/or coping behaviors. These findings may have broader implications for other animal species with comparable gut microbiota, intergenerational epigenetics and developmental biology, including humans.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbi.2024.09.020 | DOI Listing |
J Immunother Cancer
January 2025
Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
Background: Immune checkpoint inhibitors (ICIs) in combination with antiangiogenic drugs have shown promising outcomes in the third-line and subsequent treatments of patients with microsatellite stable metastatic colorectal cancer (MSS-mCRC). Radiotherapy (RT) may enhance the antitumor effect of immunotherapy. However, the effect of RT exposure on patients receiving ICIs and targeted therapy remains unclear.
View Article and Find Full Text PDFGene
January 2025
Chongqing Blood Center, Chongqing city, 400015, China. Electronic address:
Colon cancer is a leading cause of cancer-related deaths worldwide and has been increasingly linked to the gut microbiome. Clostridium butyricum (CB), a probiotic, has demonstrated potential in influencing colon cancer cell behavior, particularly through the modulation of long non-coding RNAs (lncRNAs) and mRNAs. This study examines the effects of CB on the expression of lncRNAs and mRNAs in SW480 colon cancer cells and their association with apoptosis.
View Article and Find Full Text PDFVet Microbiol
December 2024
College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471000, China. Electronic address:
Probiotics effectively alleviate host diarrhoea, but the specific mechanism is not clear. Therefore, we explored the protective mechanism of Bacillus coagulans (BC) on intestinal barrier injury induced by Klebsiella pneumoniae (K. pneumoniae) in rabbits by HE, immunofluorescence and 16S rRNA.
View Article and Find Full Text PDFMicrobiome
January 2025
Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia.
Background: Accurate classification of host phenotypes from microbiome data is crucial for advancing microbiome-based therapies, with machine learning offering effective solutions. However, the complexity of the gut microbiome, data sparsity, compositionality, and population-specificity present significant challenges. Microbiome data transformations can alleviate some of the aforementioned challenges, but their usage in machine learning tasks has largely been unexplored.
View Article and Find Full Text PDFImmun Ageing
January 2025
Institute for Behavioral Medicine Research, Ohio State University, 460 Medical Center Drive, Columbus, OH, 43210, USA.
Background: Obesity and metabolic syndrome are major public health concerns linked to cognitive decline with aging. Prior work from our lab has demonstrated that short-term high fat diet (HFD) rapidly impairs memory function via a neuroinflammatory mechanism. However, the degree to which these rapid inflammatory changes are unique to the brain is unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!