Phototransformation of tetrabromobisphenol A bis (allyl ether) in an aqueous solution: Role of environmentally persistent free radicals.

Chemosphere

Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116024, China. Electronic address:

Published: October 2024

Tetrabromobisphenol A bis (allyl ether) (TBBPA-BAE) represents an extensively used brominated flame retardant (BFRs) in the production of many fields and their phototransformation in natural water is still unclear. The environmentally persistent free radicals (EPFRs) with preserved activities could exist in the environment for a long time and involve in the phototransformation of many organic pollutants. Here, the photodegradation of TBBPA-BAE with the degradation rate constant (k = 0.060 h) under simulate sunlight and the promoting effect of EPFRs on TBBPA-BAE photodegradation (k = 0.135 h) were investigated. According to the detected photogenerated electrons (e) and singlet oxygen (O) rather than hydroxyl radicals (•OH) by the electron paramagnetic resonance (EPR), the effect mechanism may not be related to the typical •OH induced by EPFRs. The possible transformation pathways of the ether cleavage, hydrolysis and hydroxylation of propenyl bond and the debromination were proposed by the primary byproducts identified by UPLC-Q-Exactive Orbitrap MS. EPFRs caused a further debromination and ether cleavage and probably be due to EPFRs directly providing electrons to TBBPA-BAE which promoted the photodegradation of TBBPA-BAE, and their reaction mechanism needed further attention. Overall, this study provided useful information to understand the role of EPFRs on phototransformation of TBBPA-BAE in water.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2024.143342DOI Listing

Publication Analysis

Top Keywords

tetrabromobisphenol bis
8
bis allyl
8
allyl ether
8
environmentally persistent
8
persistent free
8
free radicals
8
photodegradation tbbpa-bae
8
ether cleavage
8
tbbpa-bae
6
epfrs
6

Similar Publications

Analysis of potential human accumulation differences and mechanisms of environmental new flame retardants: Based on in vitro experiments and theoretical calculations.

Sci Total Environ

January 2025

Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China. Electronic address:

Hundreds of new flame retardants (NFRs) are widely used, causing environmental pollution and threating human health. In this study, based on the interaction of NFRs and human serum albumin (HSA), we assessed the differences in potential human accumulation of 8 NFRs including 1,2-Dibromo-4-(1,2-dibromoethyl)cyclohexane (TBECH), tetrabromobisphenol A bis(dibromopropyl ether) (TBBPA-DBPE), 2,4,6-tribromophenol (TBP), pentabromophenol (PBP), tri-n-butyl phosphate (TnBP), triphenyl phosphate (TPP), Tri(2-chloroethyl) phosphate (TCEP), and Tri(1,3-dichloro-2-propyl) phosphate (TDCP). All NFRs could bind to HSA and cause slight damage to its structure, suggesting their potential human accumulation ability.

View Article and Find Full Text PDF

This study aims to develop a recyclable, economical, and flame-retardant composite material using polypropylene, beech flour, tetrabromobisphenol A bis (TBBPA), and antimony trioxide (ATO). Flame-retardant additives (TBBPA and ATO) were initially added into polypropylene at different rates, and masterbatch (MB) samples were produced by the extrusion method. Subsequently, different percentages of wood flour (10%, 15%, 20%, 25%, and 30%) along with 60% MB were added to the polypropylene to create wood-polymer composites (WPC) using the injection method.

View Article and Find Full Text PDF

Phototransformation of tetrabromobisphenol A bis (allyl ether) in an aqueous solution: Role of environmentally persistent free radicals.

Chemosphere

October 2024

Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116024, China. Electronic address:

Tetrabromobisphenol A bis (allyl ether) (TBBPA-BAE) represents an extensively used brominated flame retardant (BFRs) in the production of many fields and their phototransformation in natural water is still unclear. The environmentally persistent free radicals (EPFRs) with preserved activities could exist in the environment for a long time and involve in the phototransformation of many organic pollutants. Here, the photodegradation of TBBPA-BAE with the degradation rate constant (k = 0.

View Article and Find Full Text PDF

Neurotoxicity of tetrabromobisphenol-A-bis(2,3-dibromopropyl ether) through the GABAergic and serotonergic neurotransmission in Caenorhabditis elegans.

Environ Pollut

September 2024

State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China. Electronic address:

Tetrabromobisphenol-A-bis(2,3-dibromopropyl ether) (TBBPA-BDBPE), a novel additive brominated flame retardant, is being developed for use in polyolefin and copolymers. Despite its emerging application, the neurotoxicity and mechanisms of action of TBBPA-BDBPE remain unexplored. Caenorhabditis elegans was utilized as the model organism to study the neurotoxic effects of TBBPA-BDBPE across environmental concentrations ranging from 0 to 100 μg/L.

View Article and Find Full Text PDF

Assessment of the disruption effects of tetrabromobisphenol A and its analogues on lipid metabolism using multiple in vitro models.

Ecotoxicol Environ Saf

July 2024

State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, PR China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, PR China.

Tetrabromobisphenol A (TBBPA), a widely-used brominated flame retardant, has been revealed to exert endocrine disrupting effects and induce adipogenesis. Given the high structural similarities of TBBPA analogues and their increasing exposure risks, their effects on lipid metabolism are necessary to be explored. Herein, 9 representative TBBPA analogues were screened for their interference on 3T3-L1 preadipocyte adipogenesis, differentiation of C3H10T1/2 mesenchymal stem cells (MSCs) to brown adipocytes, and lipid accumulation of HepG2 cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!