A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Linking gut microbiota dysbiosis to molecular pathways in Alzheimer's disease. | LitMetric

Linking gut microbiota dysbiosis to molecular pathways in Alzheimer's disease.

Brain Res

Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran. Electronic address:

Published: December 2024

Background: Alzheimer's disease (AD) is a progressive neurodegenerative disorder marked by cognitive decline and synaptic dysfunction. Emerging evidence suggests a significant relationship between gut microbiota and brain health, mediated through the gut-brain axis. Alterations in gut microbiota composition may influence AD progression by affecting molecular pathways and miRNA interactions.

Methods: We retrieved and analyzed microarray data from 34 tissue samples of AD patients and controls (GEO accession number GSE110298). Differentially expressed genes (DEGs) with the GCS score package in R, considering a p-value < 0.05 and logFC<-1 and logFC>1 to isolate significant gene clusters. Enrichment analysis of signaling pathways and gene ontology was conducted using Enrichr, KEGG, Panther, DAVID, and shiny GO databases. Protein-protein interactions were visualized with Networkanalyst and CytoScape. Gut microbiota in 200 CE patients was analyzed using next-generation sequencing (NGS) data from gutMDisorder and GMrepo databases. miRNA interactions were evaluated using miEAA, Targetscan, MienTurnet, and miRnet databases.

Results: Significant reductions in microbial taxa, including Clostridia (LDA score -4.878208), Firmicutes (LDA score -4.817032), and Faecalibacterium (LDA score -4.40714), were observed in AD patients. Pathway analysis highlighted the involvement of Axon guidance, ErbB, and MAPK signaling pathways in AD. Venn diagram analysis identified 619 intersecting genes in brain and gut tissues, emphasizing pathways such as Axon Guidance and Cell Cycle. miRNA analysis revealed important regulatory miRNAs, including hsa-let-7c, hsa-mir-125b-2, and hsa-mir-145, which target key transcription factors involved in AD pathology.

Conclusion: The study demonstrates significant dysbiosis in the gut microbiota of AD patients and underscores the potential role of gut microbiota in AD progression through altered signaling pathways and miRNA interactions. These findings highlight the need for further research into microbiota-based interventions as potential therapeutic strategies for AD.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.brainres.2024.149242DOI Listing

Publication Analysis

Top Keywords

gut microbiota
12
molecular pathways
8
alzheimer's disease
8
linking gut
4
microbiota dysbiosis
4
dysbiosis molecular
4
pathways alzheimer's
4
disease background
4
background alzheimer's
4
disease progressive
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!