Mild condition lignin modification enabled high-performance anticorrosive polyurethane coating.

Int J Biol Macromol

College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China. Electronic address:

Published: September 2024

The diverse active hydroxyl groups of lignin pose challenges in the preparation of lignin-based polyurethane coatings with exceptional long-term anticorrosive properties. Here, the dense and defect-free lignin-based polyurethane coating with a thickness of 25 ± 5 μm was successfully synthesized using a mild hydroxypropyl lignin modification approach, exhibiting outstanding barrier properties (|Z| > 10 Ω cm) and long-term anti-corrosion performance exceeding 120 d. Under ambient conditions (i.e., 25 °C and atmospheric pressure), propylene oxide was directly blended with the alkali solution of lignin to effectively convert phenolic hydroxyl groups into more reactive aliphatic hydroxyl groups, while also minimizing the significant increase in molecular weight caused by lignin condensation. As a result, the high crosslinking density of lignin polyurethane coatings effectively prevented the penetration of corrosive media and enhanced the long-term corrosion resistance of the coatings. Overall, the results demonstrate that a mild hydroxypropyl modification process is an effective and facile strategy to prepare highly reactive lignin-based polyols, which is crucial for the development of high-performance bio-based polyurethane anticorrosive coatings.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2024.135719DOI Listing

Publication Analysis

Top Keywords

hydroxyl groups
12
lignin modification
8
polyurethane coating
8
lignin-based polyurethane
8
polyurethane coatings
8
mild hydroxypropyl
8
lignin
6
polyurethane
5
mild condition
4
condition lignin
4

Similar Publications

Enantioselective Borylcupration/Cyclization of Alkene-Tethered Oxime Esters.

Angew Chem Int Ed Engl

January 2025

University of Toronto, Dept. of Chemistry, 80 St. George Street, M5S 3H6, Toronto, CANADA.

A copper-catalyzed enantioselective synthesis of borylated 1-pyrrolines from γ,δ-unsaturated oxime esters is reported. Twenty-four novel 1-pyrroline derivatives are reported in yields ranging from 26% to 96% and enantioselectivities from 74.5:25.

View Article and Find Full Text PDF

Deep photocatalytic NO oxidation on ZnTi-LDH: Pivotal role of surface hydroxyls dynamic evolution.

J Hazard Mater

January 2025

Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China.

Surface defect engineering has been regarded as an appealing strategy to improve photocatalytic performance, but defects are susceptible to inactivation and thus lose their function as active sites. In this study, we successfully tailored and identified the dynamic evolution of surface hydroxyl defects over ZnTi-layered double hydroxide (ZnTi-LDH) photocatalyst. The enrichment of surface hydroxyl electrons and the dynamic circulation of hydroxyl defects result in enhanced separation and transport capabilities of photogenerated carriers, thereby ensuring the perpetual activation of small molecules into •O and •OH.

View Article and Find Full Text PDF

Bromide-promoted cascade annulation of isocyanobiaryls with aldehydes through photoredox catalysis.

Org Biomol Chem

January 2025

Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China.

Herein, we report a cascade annulation of readily available isocyanobiaryls with simple aldehydes photoredox catalysis, providing a straightforward approach towards valuable 6-hydroxyalkylated phenanthridines. Mechanistic studies indicated the generation of a key acyl radical from aldehydes by hydrogen atom abstraction with a bromine radical. This protocol exhibits exceptional chemoselectivity, excellent tolerance of various functional groups and mild reaction conditions.

View Article and Find Full Text PDF

Fabrication of Dual-Functional MXene@NiCoS Composites with Enhanced Nonlinear Optical and Electrochemical Properties.

Small

January 2025

Key Laboratory of Photonic Materials and Devices Physics for Oceanic Applications, Ministry of Industry and Information Technology of China, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin, 150001, China.

The design and synthesis of multifunctional nanomaterials have attracted considerable attention for expanding the range of practical applications. Herein, a metal-organic framework (MOFs)-derived NiCoS attached to MXene is rationally designed and constructed for an optical limiter and supercapacitor. The MOF-derived NiCoS enhances the tendency of hydroxyl groups on the MXene surface to attract metal ions, resulting in the formation of sulfur vacancies.

View Article and Find Full Text PDF

In present study, 15 morphologically different fungi isolated from rhizopheric soils of an industrial area were screened for their Zn removal efficiency from aqueous solution. Isolate depicting highest potential was molecularly identified as Aspergillus terreus SJP02. Effect of various process parameters viz.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!