Objective: To investigate the protective effect of lanthanum chloride on kidney injury in chronic kidney disease and its mechanism.

Methods: 1. Patients with CKD stage 2-5 were selected to analyze the effect of lanthanum-containing preparations on CKD. 2. Sixty healthy male Wistar rats were randomly divided into control group, model group, lanthanum chloride groups (0.03 ng/kg, 0.1 ng/kg, 0.3 ng/kg, q.3d., i.v.), and lanthanum carbonate group (0.3 g/kg, q.d., p.o.). The model group was given 2 % adenine suspension (200 mg/kg, q.d., p.o.) for the first two weeks, followed by adenine (200 mg/kg, b.i.d., p.o.) for 2 weeks, and all animals were sacrificed after eight weeks of administration. 3. The serum and kidneys of rats in each group were collected to detect the oxidative stress indicators and the expressions of LC3B-Ⅱ/Ⅰ, p62, Bcl-2, Bax, Caspase-3 and Cleaved Caspase-3. 4. Human renal tubular epithelial cells (HK-2 cells) were divided into control group, model group, lanthanum chloride group, pyrophosphate (PPI) group, chloroquine (CQ) group, rapamycin group, doxorubicin (DOX) group and N-acetyl-L-cysteine (NAC) group. The mitochondrial status, mitophagy and apoptosis levels were detected.

Results: 1.Lanthanum-containing preparations can significantly reduce the biochemical indexes of kidney injury in patients with CKD. 2. In the model group, the glomerular and renal tubular edema, the mitochondria were short and round, and the expression of LC3B-Ⅱ/Ⅰ and Bax increased, while the expression of P62, Bcl-2 and Caspase-3 decreased, and there was a significant improvement in the administration group, especially the 0.1 ng/kg group and lanthanum carbonate group. 3. In the HK-2 cell model group, mitochondrial membrane potential decreased, morphology changed and the results were reversed by lanthanum chloride.

Conclusion: Lanthanum chloride may alter the morphology of nano-hydroxyapatite, thereby inhibiting its induced mitophagy and mitochondria-mediated apoptosis, and ultimately improve CKD renal injury effectively.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.freeradbiomed.2024.09.007DOI Listing

Publication Analysis

Top Keywords

lanthanum chloride
20
model group
20
group
18
group lanthanum
12
lanthanum
8
chronic kidney
8
kidney disease
8
mitophagy mitochondria-mediated
8
mitochondria-mediated apoptosis
8
kidney injury
8

Similar Publications

Convenient lanthanum-mediated synthesis of bulky -alkyl amines from nitriles.

Chem Commun (Camb)

December 2024

Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada.

-alkyl amines can be conveniently prepared in one step from nitriles by a double addition of ethyl or propyl Grignard reagent mediated by a commercially available lanthanum chloride-lithium chloride complex solution. The reaction operates on a variety of benzonitriles, with several heterocyclic nitriles and an alkyl nitrile also being suitable substrates.

View Article and Find Full Text PDF

Escape of etiolated hypocotyls of cotton () from the unilateral high intensity blue light after being pulled out from the soil.

Funct Plant Biol

December 2024

National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng 475004, China.

Plant stems grow towards the incident light in response to unilateral blue light to optimize photosynthesis. However, our findings reveal that unilateral high-intensity blue light (HBL) triggers backlit lodging in etiolated cotton (Gossypium hirsutum ) hypocotyls when they are pulled approximately 1.5cm from the soil.

View Article and Find Full Text PDF

Acidic stress is a formidable environmental factor that exerts adverse effects on plant growth and development, ultimately leading to a potential reduction in agricultural productivity. A low pH triggers Ca influx across the plasma membrane (PM), eliciting distinct responses under various acidic pH levels. However, the underlying mechanisms by which Arabidopsis plant cells generate stimulus-specific Ca signals in response to acidic stress remain largely unexplored.

View Article and Find Full Text PDF

Crosstalk of methylglyoxal and calcium signaling in maize (Zea mays L.) thermotolerance through methylglyoxal-scavenging system.

J Plant Physiol

December 2024

School of Life Sciences, Yunnan Normal University, Kunming, 650092, PR China; Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming, 650092, PR China; Key Laboratory of Biomass Energy and Environmental Biotechnology, Yunnan Province, Yunnan Normal University, Kunming, 650092, PR China. Electronic address:

Article Synopsis
  • Methylglyoxal (MG) and calcium ions (Ca) were found to enhance thermotolerance in maize seedlings when exposed to heat stress, significantly increasing the survival percentage compared to control seedlings.
  • The study showed that the effectiveness of MG in improving thermotolerance was reduced when various calcium inhibitors were applied, which suggests that calcium signaling plays a role in MG's effects.
  • Both MG and Ca were shown to up-regulate various enzymes involved in detoxifying MG, indicating a collaborative effect between MG and Ca in enhancing the plant's ability to withstand stress conditions.
View Article and Find Full Text PDF
Article Synopsis
  • - The study examines how low temperatures (4℃) affect the growth of winter turnip rapeseed (Brassica rapa L.), using two varieties with different cold resistance levels, Longyou 7 (L7) and Longyou 99 (L99).
  • - Treatments with calcium and a calcium inhibitor impacted physiological traits, showing that supplementing with calcium improved cold resistance in L7 while the inhibitor had negative effects in L99, evidenced by enzyme activity changes and calcium ion flow differences.
  • - RNA sequencing revealed that specific genes related to stress response, metabolism, and signaling pathways were differentially expressed under low temperatures, leading to the identification of eight candidate genes linked to these processes.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!