A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Developing patient-derived organoids to demonstrate JX24120 inhibits SAMe synthesis in endometrial cancer by targeting MAT2B. | LitMetric

Developing patient-derived organoids to demonstrate JX24120 inhibits SAMe synthesis in endometrial cancer by targeting MAT2B.

Pharmacol Res

Department of Gynecologic Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Shanghai Key Laboratory of Embryo Original Disease, Shanghai 200030, China. Electronic address:

Published: November 2024

Endometrial cancer (EC) is one of the most common gynecologic malignancies, which lacking effective drugs for intractable conditions or patients unsuitable for surgeries. Recently, the patient-derived organoids (PDOs) are found feasible for cancer research and drug discoveries. Here, we have successfully established a panel of PDOs from EC and conducted drug repurposing screening and mechanism analysis for cancer treatment. We confirmed that the regulatory β subunit of methionine adenosyltransferase (MAT2B) is highly correlated with malignant progression in endometrial cancer. Through drug screening on PDOs, we identify JX24120, chlorpromazine derivative, as a specific inhibitor for MAT2B, which directly binds to MAT2B (K = 4.724 μM) and inhibits the viability of EC PDOs and canonical cell lines. Correspondingly, gene editing assessment demonstrates that JX24120 suppresses tumor growth depending on the presence of MAT2B in vivo and in vitro. Mechanistically, JX24120 induces inhibition of S-adenosylmethionine (SAMe) synthesis, leading to suppressed mTORC1 signaling, abnormal energy metabolism and protein synthesis, and eventually apoptosis. Taken together, our study offers a novel approach for drug discovery and efficacy assessment by using the PDOs models. These findings suggest that JX24120 may be a potent MAT2B inhibitor and will hopefully serve as a prospective compound for endometrial cancer therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.phrs.2024.107420DOI Listing

Publication Analysis

Top Keywords

endometrial cancer
16
patient-derived organoids
8
cancer drug
8
cancer
6
mat2b
6
jx24120
5
pdos
5
developing patient-derived
4
organoids demonstrate
4
demonstrate jx24120
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!