A new therapeutic strategy for infectious diseases against intracellular multidrug-resistant bacteria.

J Control Release

Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650500, PR China; State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, PR China. Electronic address:

Published: November 2024

AI Article Synopsis

Article Abstract

Bacterial infections result in 7,700,000 deaths per year globally, with intracellular bacteria causing repeated and resistant infection. No drug is currently licenced for the treatment of intracellular bacteria. A new screening platform mimicking the host milieu has been established to explore phytochemical antibiotic adjuvants. Previously neglected isoprenylated flavonoids were found to be effective against methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococci (VRE). Specifically, the synergistic effect between glabrol and streptomycin against intracellular bacteria was observed for the first time. The glabrol-streptomycin combination targets bacterial inner membrane phospholipids, disrupts arginine biosynthesis, inhibits cell wall proteins and biofilm formation genes (agrA/B/C/D), and promotes ROS production, causing subsequent membrane and wall damage. To enhance the selective uptake of combination drug into infected cells, hyaluronic acid-streptomycin-lipoic acid-glabrol nanoparticles (HSLGS-S) were designed and synthesized to trigger the intracellular delivery of the glabrol-streptomycin combination. Thus, the treatment can be transported into the infected intracellular region and selectively release the glabrol-streptomycin combination to the bacterial at site. The bioactivity of HSLGS-S in clearing intracellular bacteria was 20-fold higher than that of the glabrol-streptomycin combination alone in vitro and 2- to 10-fold higher in vivo.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jconrel.2024.09.028DOI Listing

Publication Analysis

Top Keywords

intracellular bacteria
16
glabrol-streptomycin combination
16
intracellular
7
bacteria
5
combination
5
therapeutic strategy
4
strategy infectious
4
infectious diseases
4
diseases intracellular
4
intracellular multidrug-resistant
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!