Microplastics are present even in remote regions like the Southern Ocean. Once in the water, they are rapidly colonised by marine microorganisms, forming the plastisphere. To address this issue in Antarctic waters, we conducted a microcosm experiment by incubating polypropylene, polyethylene, polystyrene microplastic pellets, and quartz for 33 days on Livingston Island, South Shetland Islands, Antarctica. We analysed plastic colonisation and plastisphere dynamics using scanning electron microscopy, flow cytometry, bacterial cultivation, qPCR, and 16S rRNA gene metabarcoding. Our results show rapid and consistent colonisation, although biomass formation was slightly slower than in other oceans, indicating unique environmental constraints. Time was the main factor influencing biofilm communities, while plastic polymer types had little effect. We observed a transition in microbial communities from early- to late-biofilm stages between days 12 and 19. Additionally, we described the bacterial plastisphere composition in this Antarctic environment, including the presence of hydrocarbon-degrading bacteria.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.marpolbul.2024.116961 | DOI Listing |
Nat Commun
January 2025
Centro de Astrobiologia (CAB), INTA-CSIC, Torrejón de Ardoz, Madrid, Spain.
Microorganisms are present in snow/ice of the Antarctic Plateau, but their biogeography and metabolic state under extreme local conditions are poorly understood. Here, we show the diversity and distribution of microorganisms in air (1.5 m height) and snow/ice down to 4 m depth at three distant latitudes along a 2578 km transect on the East Antarctic Plateau on board an environmentally friendly, mobile platform.
View Article and Find Full Text PDFBMJ Mil Health
January 2025
Academic Department of Military Emergency Medicine, Royal Centre for Defence Medicine, Birmingham, UK.
PLoS One
January 2025
Victoria University of Wellington, Wellington, New Zealand.
Photosynthetic eukaryotic microalgae are key primary producers in the Antarctic sea ice environment. Anticipated changes in sea ice thickness and snow load due to climate change may cause substantial shifts in available light to these ice-associated organisms. This study used a laboratory-based experiment to investigate how light levels, simulating different sea ice and snow thicknesses, affect fatty acid (FA) composition in two ice associated microalgae species, the pennate diatom Nitzschia cf.
View Article and Find Full Text PDFMicrobiome
January 2025
Australian Institute of Marine Science, PMB no3 Townsville MC, Townsville, QLD, 4810, Australia.
Background: Seawater microbes (bacteria and archaea) play essential roles in coral reefs by facilitating nutrient cycling, energy transfer, and overall reef ecosystem functioning. However, environmental disturbances such as degraded water quality and marine heatwaves, can impact these vital functions as seawater microbial communities experience notable shifts in composition and function when exposed to stressors. This sensitivity highlights the potential of seawater microbes to be used as indicators of reef health.
View Article and Find Full Text PDFPhysiol Plant
January 2025
Centro de Ecología Integrativa (CEI), Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile.
Low temperatures are one of the critical conditions affecting the performance and distribution of plants. Exposure to cooling results in the reprogramming of gene expression, which in turn would be mediated by epigenetic regulation. Antarctica is known as one of the most severe ecosystems, but several climate models predict an increase in average temperature, which may positively impact the development of Antarctic plants; however, under warmer temperatures, plants' vulnerability to damages from low-temperature events increases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!