Effective action of silymarin against ketamine-induced schizophrenia in male mice: Insight into the biochemical and molecular mechanisms of action.

J Psychiatr Res

DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria.

Published: November 2024

Background: Neurochemical dysregulations resulting from N-methyl-D-aspartate hypofunction (NMDA), are exacerbated by neuroimmune and oxidative stress and are known risk factors for neuropsychiatric disorders like schizophrenia-like diseases. Here, we investigate the protective and curative effects, and mechanisms of silymarin, a polyphenolic flavonoid with neuroprotective functions in preventive-reversal model of ketamine, an NMDA antagonist in mice.

Methods: Mice were grouped into 6 cohorts (n = 9). In the pre-treatment, groups 1 and 2 received saline (10 mL/kg/p.o.), groups 3 and 4 (silymarin, 50 and 100 mg/kg/p.o.), and group 5 (risperidone, 0.5 mg/kg/p.o.) consecutively for 14 days, then combined with ketamine (20 mg/kg/i.p.) injection in groups 2-5 from days 8-14. However, mice in reversal study received intraperitoneal injection of ketamine for 14 days before silymarin (50 and 100 mg/kg, p.o) and risperidone (0.5 mg/kg, p.o.) treatment between days 8-14. The consequences on schizophrenia-like behavior, neurochemistry, inflammation, and oxidative/nitrergic stress markers were evaluated in critical brain regions of the disease.

Results: Silymarin prevented and reversed ketamine-induced increase in dopamine, 5-hydroxyltryptamine, acetylcholinesterase, malondialdehyde and nitrite levels in the striatum, prefrontal-cortex and hippocampus. These were accompanied by improvement in hyperlocomotion, stereotypy, memory, and social impairments, notably devoid of cataleptogenic potential. Complementarily, silymarin reduced myeloperoxidase, tumor-necrosis factor-α, and interleukin-6 concentrations relative to the ketamine group. Moreover, ketamine-induced decreased brain-derived neurotrophic factor, glutathione, catalase, superoxide-dismutase levels were normalized by silymarin in the brain regions relative to ketamine.

Conclusions: Overall, these findings suggest that silymarin's antipsychotic effect might be primarily associated, among other mechanisms, with the normalization of neurochemical and neurotrophic changes in the mice brains.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jpsychires.2024.09.003DOI Listing

Publication Analysis

Top Keywords

days 8-14
8
brain regions
8
silymarin
7
effective action
4
action silymarin
4
silymarin ketamine-induced
4
ketamine-induced schizophrenia
4
schizophrenia male
4
mice
4
male mice
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!