The adenosine di-phosphate (ADP) ribosylation factor (Arf) small guanosine tri-phosphate (GTP)ases function as molecular switches to activate signaling cascades that control membrane organization in eukaryotic cells. In Arf1, the GDP/GTP switch does not occur spontaneously but requires guanine nucleotide exchange factors (GEFs) and membranes. Exchange involves massive conformational changes, including disruption of the core β-sheet. The mechanisms by which this energetically costly switch occurs remain to be elucidated. To probe the switch mechanism, we coupled pressure perturbation with nuclear magnetic resonance (NMR), Fourier Transform infra-red spectroscopy (FTIR), small-angle X-ray scattering (SAXS), fluorescence, and computation. Pressure induced the formation of a classical molten globule (MG) ensemble. Pressure also favored the GDP to GTP transition, providing strong support for the notion that the MG ensemble plays a functional role in the nucleotide switch. We propose that the MG ensemble allows for switching without the requirement for complete unfolding and may be recognized by GEFs. An MG-based switching mechanism could constitute a pervasive feature in Arfs and Arf-like GTPases, and more generally, the evolutionarily related (Ras-like small GTPases) Rags and Gα GTPases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11441498 | PMC |
http://dx.doi.org/10.1073/pnas.2413100121 | DOI Listing |
J Biomol Struct Dyn
December 2024
Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India.
Nucleocapsid protein (N) of SARS-CoV-2 is a multivalent protein, which is responsible for viral replication, assembly, packaging and modulates host immune response. In this study, we report conformational measurements of N protein at different pH by observing transition in secondary and tertiary structural contents by biophysical and computational approaches. Spectroscopic measurements revealed that N protein loses its secondary and tertiary structure at extreme acidic pH while maintaining its native conformation at mild acidic and alkaline pH.
View Article and Find Full Text PDFPhys Life Rev
December 2024
Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russian Federation. Electronic address:
This review presents the current understanding of (i) spontaneous self-organization of spatial structures of protein molecules, and (ii) possible ways of chaperones' assistance to this process. Specifically, we overview the most important features of spontaneous folding of proteins (mostly, of the single-domain water-soluble globular proteins): the choice of the unique protein structure among zillions of alternatives, the nucleation of the folding process, and phase transitions within protein molecules. We consider the main experimental facts on protein folding, both in vivo and in vitro, of both kinetic and thermodynamic nature.
View Article and Find Full Text PDFArch Biochem Biophys
December 2024
Department of Biotechnology and Dr. B. C. Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, Kolkata, India. Electronic address:
Given the high prevalence of Chagas disease in the Americas, we targeted the unique arginyl-tRNA synthetase of its causative agent Trypanosoma cruzi. Among their many possible uses, naphthalene-derived fluorescent ligands, such as ANS and bis-ANS, may be employed in pharmacokinetic research. Although ANS and bis-ANS have become prominent fluorescent probes for protein characterization, the structural and spectroscopic characteristics of protein-ANS/bis-ANS complexes remain largely unknown.
View Article and Find Full Text PDFFood Res Int
December 2024
College of Food Science and Engineering, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Ningbo University, Ningbo 315211, China. Electronic address:
Under specific pretreatment or processing conditions, spheroprotein can be transformed into a molten globule state, a typical protein conformation with enhanced functionality. Analyzing the correlation between the formation of molten-globule structures and their quality and functional characteristics is critical for developing tailored processing features, especially for minimally processed future foods. This review outlines the mechanisms driving the formation of molten globule proteins through various processes including ultra-high pressure pretreatments, heating, ultrasonication, pH-shifting, macromolecular crowding and exposure to small-molecule denaturants.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
November 2024
Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia.
This paper is dedicated to the memory of Oleg B. Ptitsyn (1929-1999) and presents an answer to his question: "What is the role of conserved non-functional residues in protein folding?". This answer follows from the experimental works of three labs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!