In subarctic regions, rising temperature and permafrost thaw lead to the formation of thermokarst ponds, where organics from eroding permafrost accumulate. Despite its environmental significance, limited knowledge exists regarding the photosensitivity of permafrost-derived carbon in these ponds. In this study, laboratory experiments were conducted to explore the photochemical transformations of organic matter in surface water samples from thermokarst ponds from different environments in northern Quebec, Canada. One pond near Kuujjuarapik is characterized by the presence of a collapsing palsa and is therefore organically rich, while the other pond near Umiujaq is adjacent to a collapsing lithalsa and thus contains fewer organic matters. Photobleaching occurred in the Umiujaq sample upon irradiation, whereas the Kuujjuarapik sample exhibited an increase in light absorbance at wavelength related to aromatic functionalities, indicating different photochemical aging processes. Ultrahigh-resolution mass spectrometry analysis reveals that the Kuujjuarapik sample preferentially photoproduced highly unsaturated CHO compounds with great aromaticity, while the irradiated Umiujaq sample produced a higher proportion of CHON aromatics with reduced nitrogen functionalities. Overall, this study illustrates that the photochemical reactivity of thermokarst pond water varies with the source of organic matter. The observed differences in reactivity contribute to an improved understanding of the photochemical emission of volatile organic compounds discovered earlier. Further insights into the photoinduced evolutions in thermokarst ponds may require the classification of permafrost-derived carbon therein.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.est.4c05320 | DOI Listing |
Environ Sci Technol
October 2024
Universite Claude Bernard Lyon 1, CNRS, IRCELYON, UMR 5256, Villeurbanne F-69100, France.
Environ Pollut
May 2022
State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, China; Sino-Danish Center for Education and Research (SDC), University of Chinese Academy of Sciences, Beijing, China.
The popular paradigm in trophic dynamic theory is that contemporary autochthonous organic matter (e.g., phytoplankton) sustains consumer growth, whereas aged allochthonous organic matter is conceptually considered recalcitrant resources that may only be used to support consumer respiration but suppress consumer growth.
View Article and Find Full Text PDFAmbio
February 2022
Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Telegrafenberg A45, 14473, Potsdam, Germany.
Arctic warming is causing ancient perennially frozen ground (permafrost) to thaw, resulting in ground collapse, and reshaping of landscapes. This threatens Arctic peoples' infrastructure, cultural sites, and land-based natural resources. Terrestrial permafrost thaw and ongoing intensification of hydrological cycles also enhance the amount and alter the type of organic carbon (OC) delivered from land to Arctic nearshore environments.
View Article and Find Full Text PDFEnviron Int
January 2020
Department of Bioscience and Arctic Research Centre, Aarhus University, DK-8600 Silkeborg, Denmark; Sino-Danish Centre for Education and Research, Beijing 100190, China; Limnology Laboratory and EKOSAM, Department of Biological Sciences, Middle East Technical University, Ankara, Turkey.
Dissolved organic matter (DOM) released from permafrost thaw greatly influences the biogeochemical cycles of, among others, downstream carbon, nitrogen and phosphorus cycles; yet, knowledge of the linkages between bacterial communities with permafrost DOM heterogeneity is limited. Here, we aim at unravelling the responses of bacterial diversities and metabolic profiles to DOM quantity and composition across permafrost thawing gradients by coupling an extensive field investigation with bio-incubation experiments. Richness, evenness and dissimilarities of the whole and rare communities decreased from thermokarst pits to headstreams and to downstream rivers.
View Article and Find Full Text PDFNew Phytol
April 2020
Center for Ecosystem Science and Society, Northern Arizona University, PO Box 5620, Flagstaff, AZ, 86011, USA.
As Arctic soils warm, thawed permafrost releases nitrogen (N) that could stimulate plant productivity and thus offset soil carbon losses from tundra ecosystems. Although mycorrhizal fungi could facilitate plant access to permafrost-derived N, their exploration capacity beyond host plant root systems into deep, cold active layer soils adjacent to the permafrost table is unknown. We characterized root-associated fungi (RAF) that colonized ericoid (ERM) and ectomycorrhizal (ECM) shrub roots and occurred below the maximum rooting depth in permafrost thaw-front soil in tussock and shrub tundra communities.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!