AI Article Synopsis

  • - This study investigates garlic's phytochemical properties and successfully isolates a bioactive compound called 4-chloro-1-(4-methoxyphenyl) hydrazide (BA4C) using gas chromatography-mass spectroscopy (GC-MS).
  • - Preliminary screenings identified various phytochemicals like alkaloids and flavonoids, while computational analyses highlighted the compound's strong intramolecular interactions and reducing properties, especially at its methoxy and hydrazide groups.
  • - BA4C displays favorable binding with key enzymes related to antioxidant activity, such as NADPH dehydrogenase and glutathione reductase, suggesting its potential effectiveness in biological reduction processes.

Article Abstract

Glutathione remains one of the most efficient antioxidant compounds in living systems, and the biological abilities of hydrazides have been well documented in literature. This study highlights the phytochemical constituents of garlic and the separation of the bioactive benzoic acid, 4-chloro- 1-(4-methoxyphenyl) hydrazide (BA4C) using gas chromatography-mass spectroscopy (GC-MS) technique. Preliminary phytochemical screening reveals the presence of alkaloids, saponins, flavonoids, tannins, terpenoids, steroids and phenols. Computationally, compound BA4C was optimized using the B3LYP/aug-cc-PVDZ DFT method. Spectroscopic studies of the compound involved analysis of the vibrational FT-IR frequencies and the modes of vibrations. Frontier molecular orbitals analysis records an energy gap of 4.3391 eV; NBO studies reveal that the compound has strong perturbation energies of 246 kcal/mol and 269 kcal/mol among its intramolecular interactions such as *C - C to *C - C and *C - C to *C - C, respectively. According to the visualization of non-covalent interactions, steric repulsions were observed at the core of the phenyl and benzene rings. However, other regions of the compound depict a significant balance of forces between steric repulsions and van der Waals forces. To significantly deduce the reducing power of compound BA4C, electrons were found to be highly localized at the methoxy and hydrazide moieties significantly implying their propensity to donate electrons to oxidized systems. Furthermore, ADMET analysis reveals that the compound has two hydrogen donors. Most significantly, the compound binds to NADPH dehydrogenase (5V4P) and glutathione reductase (1XAN) with binding energies of - 6.0 kcal/mol and - 8.0 kcal/mol showing considerable favourable binding feasibility as well as forming plural hydrogen bonds with the amino acid residues. Notably, BA4C was bonded at the active site of 1XAN, which implies the ability of the compound for the reduction of oxidized glutathione.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12010-024-05051-wDOI Listing

Publication Analysis

Top Keywords

compound
8
compound ba4c
8
steric repulsions
8
investigating antioxidant
4
antioxidant potential
4
potential mechanism
4
mechanism hydrazide
4
hydrazide bioactive
4
bioactive component
4
component garlic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!