A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Separating the Living from the Dead: An Electrophoretic Approach. | LitMetric

Separating the Living from the Dead: An Electrophoretic Approach.

Anal Chem

Microscale Bioseparations Laboratory and Biomedical Engineering Department, Rochester Institute of Technology, 160 Lomb Memorial Drive, Rochester, New York 14623, United States.

Published: October 2024

Cell viability studies are essential in numerous applications, including drug development, clinical analysis, bioanalytical assessments, food safety, and environmental monitoring. Microfluidic electrokinetic (EK) devices have been proven to be effective platforms to discriminate microorganisms by their viability status. Two decades ago, live and dead (. ) cells were trapped at distinct locations in an insulator-based EK (iEK) device with cylindrical insulating posts. At that time, the discrimination between live and dead cells was attributed to dielectrophoretic effects. This study presents the continuous separation between the live and dead . cells, which was achieved primarily by combining linear and nonlinear electrophoretic effects in an iEK device. First, live and dead . cells were characterized in terms of their electrophoretic migration, and then the properties of both live and dead . cells were input into a mathematical model built using COMSOL software to identify appropriate voltages for performing an iEK separation in a T-cross iEK channel. Subsequently, live and dead cells were successfully separated experimentally in the form of an electropherogram, achieving a separation resolution of 1.87. This study demonstrated that linear and nonlinear electrophoresis phenomena are responsible for the discrimination between live and dead cells under DC electric fields in iEK devices. Continuous electrophoretic assessments, such as the one presented here, can be used to discriminate between distinct types of microorganisms including live and dead cell assessments.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.4c03336DOI Listing

Publication Analysis

Top Keywords

live dead
32
dead cells
28
dead
9
live
8
iek device
8
discrimination live
8
linear nonlinear
8
cells
7
iek
5
separating living
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!