Intracellular lipid droplets are exploited by Junín virus in a nucleoprotein-dependent process.

J Cell Sci

Laboratorio de Procesos Moleculares de la Interacción Virus-Célula, Departamento de Química Biológica (QB), Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad de Buenos Aires (UBA)-Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, C1428EHA, Argentina.

Published: October 2024

Lipid droplets (LDs) are organelles involved in lipid storage, maintenance of energy homeostasis, protein sequestration, signaling events and inter-organelle interactions. Recently, LDs have been shown to favor the replication of members from different viral families, such as the Flaviviridae and Coronaviridae. In this work, we show that LDs are essential organelles for members of the Arenaviridae family. A virus-driven reduction of LD number was observed in cultures infected with Junín mammarenavirus (JUNV), caused in part by action of the viral nucleoprotein. Notably, we identified a new pool of nucleoprotein and viral RNA that localizes in the vicinity of LDs, suggesting that LDs play a role during the viral replication cycle. Regarding the mechanism behind LD exhaustion, we found evidence that lipophagy is involved in LD degradation with the resulting fatty acids being substrates of fatty acid β-oxidation, which fuels viral multiplication. This work highlights the importance of LDs during the replication cycle of JUNV, contributing to the knowledge of the metabolic changes these mammarenaviruses cause in their hosts.

Download full-text PDF

Source
http://dx.doi.org/10.1242/jcs.261745DOI Listing

Publication Analysis

Top Keywords

lipid droplets
8
replication cycle
8
lds
6
viral
5
intracellular lipid
4
droplets exploited
4
exploited junín
4
junín virus
4
virus nucleoprotein-dependent
4
nucleoprotein-dependent process
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!