Hepatic amino acid (AA) metabolism and glucagon secretion are linked in a feedback cycle in which circulating AAs stimulate glucagon secretion and alpha-cell proliferation, whereas glucagon stimulates hepatic AA catabolism. It has been proposed that metabolic dysfunction-associated steatotic liver disease (MASLD) leads to hepatic glucagon resistance, which may result in hyperaminoacidemia and hyperglucagonemia. We tested the glucagon effect on AA metabolism in subjects with obesity; 11 with steatohepatitis (MASH), 10 with steatosis (MAS), and 7 subjects [control (CON)] without steatosis. We performed a somatostatin clamp with infusions of insulin and low dose followed by high-dose glucagon. We measured plasma levels of 17 AAs and assessed hepatic fat content (FF%) and body fat distribution (visceral and subcutaneous adipose tissue mass) by MRI. HighGlucagon suppressed plasma total AA equally in all groups; MASH 13% (SD 9%), MAS 14% (7%), and CON 11% (5%), respectively. In univariate regression analyses, visceral adipose tissue mass (β = 0.471, = 0.011) and AA concentration at LowGlucagon (β = -0.524, = 0.004), but not FF% (β = -0.243, = 0.213), were significant predictors of AA reduction. Using a stepwise backward multiple regression approach revealed similar results. Total and specific AA levels (glutamic acid and tyrosine) were higher in both MASLD groups during the study, and FF% was positively correlated to a number of individual AAs. Although finding elevated AA concentrations in subjects with MASLD, we conclude that in patients with MASLD that do not have elevated glucagon at baseline, glucagon suppresses circulating AA levels equally in subjects with and without MASLD. ClinicalTrials.gov: NCT04042142. The purpose of the study was to investigate the concept of "glucagon resistance" in metabolic dysfunction-associated steatotic liver disease (MASLD) pathogenesis. We asked if a disruption of the glucagon-mediated suppression of hepatic amino acid (AA) catabolism is present in individuals with MASLD compared with individuals with obesity but no MASLD. Contrary to expectations, we found no disruption of the glucagon-stimulated suppression of plasma AA concentration, which disputes the hypothesis that MASLD causes resistance to glucagon.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpendo.00187.2024 | DOI Listing |
Crit Care
January 2025
Department of Critical Care Medicine, Cumming School of Medicine, Health Research Innovation Center (HRIC), University of Calgary, Room 4C64, 3280 Hospital Drive N.W., Calgary, AB, T2N 4Z6, Canada.
Background: Traumatic brain injury (TBI) is a major public health concern worldwide, contributing to high rates of injury-related death and disability. Severe traumatic brain injury (sTBI), although it accounts for only 10% of all TBI cases, results in a mortality rate of 30-40% and a significant burden of disability in those that survive. This study explored the potential of metabolomics in the diagnosis of sTBI and explored the potential of metabolomics to examine probable primary and secondary brain injury in sTBI.
View Article and Find Full Text PDFBMC Genomics
January 2025
State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
The family Daphniphyllaceae has a single genus, and no relevant comparative phylogenetic study has been reported on it. To explore the phylogenetic relationships and organelle evolution mechanisms of Daphniphyllaceae species, we sequenced and assembled the chloroplast and mitochondrial genomes of Daphniphyllum macropodum. We also conducted comparative analyses of organelles in Daphniphyllaceae species in terms of genome structure, phylogenetic relationships, divergence times, RNA editing events, and evolutionary rates, etc.
View Article and Find Full Text PDFJ Fluoresc
January 2025
Department of Applied Physics, School of Applied Natural Sciences, Adama Science and Technology University, PO Box 1888, Adama, Ethiopia.
In this research, the photophysical properties of metformin hydrochloride (MF-HCl) were studied using spectroscopic and molecular docking techniques. The interaction between metformin hydrochloride and caffeine is essential for understanding the pharmacokinetics of metformin, particularly in populations with high caffeine consumption. Metformin is a first-line medication for managing type 2 diabetes, while caffeine is a widely consumed dietary stimulant.
View Article and Find Full Text PDFNat Chem Biol
January 2025
Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA.
Peptide cyclization is a defining feature of many bioactive molecules, particularly in the ribosomally synthesized and post-translationally modified peptide (RiPP) family of natural products. Although enzymes responsible for N- to C-terminal macrocyclization, lanthipeptide formation or heterocycle installation have been well documented, a diverse array of cyclases have been discovered that perform crosslinking of aromatic side chains. These enzymes form either biaryl linkages between two aromatic amino acids or a crosslink between one aliphatic amino acid and one aromatic amino acid.
View Article and Find Full Text PDFNat Plants
January 2025
Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, China.
Parthenocarpy is a pivotal trait that enhances the yield and quality of fruit crops by enabling the development of seedless fruits. Here we unveil a molecular framework for the regulation and domestication of parthenocarpy in cucumber (Cucumis sativus L.).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!