The behavior of water in the deep supercooled regime has attracted significant interest, motivated by the hypothesis of the second critical point of water. Previous studies indicated the existence of a water anomaly, characterized by a minimum in the thermal conductivity of water. Here, we employ nonequilibrium molecular dynamics computer simulation and the TIP4P/2005 water force field to investigate the thermal conductivity of supercooled water targeting four different isobars, 1, 200, 700, and 1200 bar. We demonstrate using NEMD simulations the existence of minima in thermal conductivity associated with the maximum isothermal compressibility and the minimum speed of sound in water, hence establishing a firm connection with the second critical point of liquid water. Moreover, we demonstrate that thermal gradients polarize supercooled water with a thermal polarization coefficient of several mV/K. We explain the thermal polarization effect using a theoretical formulation introduced recently that connects the thermal polarization effect to the isobaric thermal expansion coefficient.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11440598 | PMC |
http://dx.doi.org/10.1021/acs.jpclett.4c02131 | DOI Listing |
Sci Rep
January 2025
Accelerator Operations and Technology Division, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM, 87545, USA.
The pursuit to operate photocathodes at high accelerating gradients to increase brightness of electron beams is gaining interests within the accelerator community, particularly for applications such as free electron lasers (FEL) and compact accelerators. Cesium telluride (CsTe) is a widely used photocathode material and it is presumed to offer resilience to higher gradients because of its wider band gap compared to other semiconductors. Despite its advantages, crucial material properties of CsTe remain largely unknown both in theory and experiments.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
Planta Piloto de Ingeniería Química (PLAPIQUI), CONICET, - Universidad Nacional del Sur (UNS), Camino La Carrindanga km 7, 8000 Bahía Blanca, Argentina; Departamento de Ingeniería Química, UNS, Avenida Alem 1253, 8000 Bahía Blanca, Argentina. Electronic address:
In this study, corn starch esters were obtained by a novel methodology using oleic acid as an esterifying agent and L(+)-tartaric acid as both catalyst and esterifying agent. The degree of substitution (DS) was determined along the reaction time to control the level of substitution achieved (up to 0.33), while all the other reaction parameters were maintained constant.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Université Le Havre Normandie, Normandie Univ, URCOM, UR 3221, Le Havre F-76600, France. Electronic address:
In this study, fungal chitosan (FC) and gum Arabic (GA) were combined to develop non-animal complex coacervates for encapsulation. Optimal coacervate formation occurred at pH 5 with a 1:4 (FC:GA) weight ratio. Innovative complementary approaches, including rheology coupled with phase-contrast microscopy, revealed that FC-GA coacervates could withstand high shear rates, reverting to their original structure afterward, making them suitable for industrial applications.
View Article and Find Full Text PDFAdv Mater
January 2025
Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
Achieving optimal capacitive energy storage performance necessitates the integration of high energy storage density, typical of ferroelectric dielectrics, with the low polarization loss associated with linear dielectrics. However, combining these characteristics in a single dielectric material is challenging due to the inherent contradictions between the spontaneous polarization of ferroelectric dielectrics and the adaptability of linear dielectrics to changes in the electric field. To address this issue, a linear isotactic sulfonylated polynorbornene dielectric characterized by ferroelectric-like crystals has been developed.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, China.
Magnetic resonance imaging (MRI) is a cornerstone technology in clinical diagnostics and in vivo research, offering unparalleled visualization capabilities. Despite significant advancements in the past century, traditional H MRI still faces sensitivity limitations that hinder its further development. To overcome this challenge, hyperpolarization methods have been introduced, disrupting the thermal equilibrium of nuclear spins and leading to an increased proportion of hyperpolarized spins, thereby enhancing sensitivity by hundreds to tens of thousands of times.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!