The glassy dynamics of dense active matter have recently become a topic of interest due to their importance in biological processes such as wound healing and tissue development. However, while the liquid-state properties of dense active matter have been studied in relation to the glass transition of active matter, the solid-state properties of active glasses have yet to be understood. In this work, we study the structural fluctuations in the active glasses composed of self-propelled particles. We develop a formalism to describe the solid-state properties of active glasses in the harmonic approximation limit and use it to analyze the displacement fields in the active glasses. Our findings reveal that the dynamics of high-frequency normal modes become quasi-static with respect to the active forces, and consequently, excitations of these modes are significantly suppressed. This leads to a violation of the equipartition law, suppression of particle displacements, and the apparent collective motion of active glasses. Overall, our results provide a fundamental understanding of the solid-state properties of active glasses.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d4sm00821a | DOI Listing |
Elife
January 2025
Department of Biology, Technion - Israel Institute of Technology, Haifa, Israel.
Dendrites are crucial for receiving information into neurons. Sensory experience affects the structure of these tree-like neurites, which, it is assumed, modifies neuronal function, yet the evidence is scarce, and the mechanisms are unknown. To study whether sensory experience affects dendritic morphology, we use the arborized nociceptor PVD neurons, under natural mechanical stimulation induced by physical contacts between individuals.
View Article and Find Full Text PDFFish Physiol Biochem
January 2025
Department of Fish Biology and Ecology, Central Laboratory for Aquaculture Research, Agricultural Research Center, Abbassa, Abo-Hammad, 44662, Sharqia, Egypt.
The current investigation assessed the beneficial impacts of dietary sodium chloride (NaCl) on the growth performance, oxidant/antioxidant, and immune responses of Nile tilapia (Oreochromis niloticus) and its adaptability to different salinity levels. After acclimating the fish to the laboratory conditions for 2 weeks, the acclimated fish (10.5 ± 0.
View Article and Find Full Text PDFJ Neurosci
January 2025
Department of Biology, University of Miami, Coral Gables, FL 33143 USA
Neuroendocrine cells react to physical, chemical, and synaptic signals originating from tissues and the nervous system, releasing hormones that regulate various body functions beyond the synapse. Neuroendocrine cells are often embedded in complex tissues making direct tests of their activation mechanisms and signaling effects difficult to study. In the nematode worm , four uterine-vulval (uv1) neuroendocrine cells sit above the vulval canal next to the egg-laying circuit, releasing tyramine and neuropeptides that feedback to inhibit egg laying.
View Article and Find Full Text PDFPediatr Exerc Sci
January 2025
Research Laboratory Education, Motricité, Sport et Santé (EM2S) LR19JS01, High Institute of Sport and Physical Education of Sfax, University of Sfax, Sfax,Tunisia.
Adolescents with intellectual disabilities (ID) often encounter challenges in walking and mobility due to cognitive and motor impairments. This study aimed to investigate the impact of real-life motor complexity on walking and mobility in this population, particularly focusing on dual-task scenarios. Twenty-four adolescents with ID, divided into trained and sedentary groups, participated in the study.
View Article and Find Full Text PDFBioelectrochemistry
January 2025
The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003 China. Electronic address:
To provide accurate diagnostic evidence for early hepatitis B virus (HBV) infection-related diseases, this study targeted HBV DNA as an analyte, where a sandwich-type electrochemical DNA sensor based on gold nanoparticles/reduced graphene oxide (Au NPs/ERGO) and cerium oxide/gold-platinum nanoparticles (CeO/AuPt NPs) was constructed. Au NPs/ERGO composite nanomaterials were first synthesized on the surface of a glass carbon electrode using electrochemical co-reduction, which significantly improved the specific surface area and electrical conductivity of the electrode. Further specific hybridization of target HBV-DNA was performed by combining capture probe DNA (S1-DNA) bound to AuNPs/ERGO with CeO/AuPt modified signal probe DNA (S2-DNA).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!