Accurate diagnosis of cerebral ischemia severity is crucial for clinical decision making. Laser speckle contrast imaging-based cerebral blood flow imaging can help assess the severity of cerebral ischemia by monitoring changes in blood flow. In this study, we simulated hyperacute ischemia in rats, isolating arterial and venous flow-related signals from cortical vasculature. Pearson correlation was used to examine the correlation between damaged vessels. Granger causality analysis was used to investigate causality correlation in ischemic vessels. Resting state analysis revealed a negative Pearson correlation between regional arteries and veins. Following cerebral ischemia induction, a positive artery-vein correlation emerged, which vanished after blood flow reperfusion. Granger causality analysis demonstrating enhanced causality coefficients for middle artery-vein pairs during occlusion, with a stronger left-right arterial effect than that of right-left, which persisted after reperfusion. These processing approaches amplify the understanding of cerebral ischemic images, promising potential future diagnostic advancements.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/brain.2024.0026 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!