In urban to peri-urban watersheds such as those surrounding San Francisco Bay, stormwater runoff is a major pathway by which contaminants enter aquatic ecosystems. We evaluated the occurrence of 154 organic contaminants liquid chromatography coupled to tandem mass spectrometry, including organophosphate esters (OPEs), bisphenols, per- and polyfluoroalkyl substances (PFASs), and a suite of novel urban stormwater tracers (SWCECs; , vehicle-derived chemicals, pesticides, pharmaceuticals/personal care products, benzothiazoles/benzotriazoles). Time-averaged composite sampling focused on storms in highly developed watersheds over four wet seasons, with complementary sampling in less-urban reference watersheds, near-shore estuarine sites, and the open Bay. Of the targeted contaminants, 68 (21 SWCECs, 29 OPEs, 3 bisphenols, 15 PFASs) were detected in ≥10 of 26 urban stormwater samples. Median concentrations exceeded 500 ng L for 1,3-diphenylguanidine, hexa(methoxymethyl)melamine, and caffeine, and exceeded 300 ng L for 2-hydroxy-benzothiazole, 5-methyl-1-benzotriazole, pentachlorophenol, and tris(2-butoxyethyl) phosphate. Median individual PFAS concentrations were <10 ng L, with highest concentrations for PFHxA (180 ng L), PFOA (110 ng L), and PFOS (81 ng L). In six of eight urban stormwater samples analyzed for 6PPD-quinone (a tire rubber-derived transformation product), concentrations exceeded coho salmon acute toxicity thresholds, suggesting (sub)lethal impacts for sensitive species. Observed concentrations were generally significantly higher in highly developed watersheds relative to reference watersheds, but not statistically different in near-shore estuarine sites, suggesting substantial transient exposure potential at stormwater outfalls or creek outflows. Results emphasized the role of stormwater in contaminant transport, the importance of vehicles/roadways as contaminant sources, and the value of monitoring broad multi-analyte contaminant suites to enable comprehensive source and toxicity evaluations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d4em00117f | DOI Listing |
Sci Total Environ
December 2024
College of Environment and Climate, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China.
This study investigated the presence of 20 organophosphate esters (OPEs) in indoor dust samples collected from the Chinese cities of Lanzhou, Xining, and Lhasa. The results demonstrate the ubiquitous presence of most OPEs in these three cities, with the highest concentrations of ΣOPEs found in Xining. We also summarized the occurrence of OPEs in indoor environments from 38 studies with 1875 samples collected across various regions of mainland China from 2012 to 2023.
View Article and Find Full Text PDFEnviron Res
December 2024
Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China. Electronic address:
Background: As a class of synthetic chemicals, organophosphate esters (OPEs) were shown to have thyroid hormones (THs) disrupting potentials in animal studies, while epidemiological evidence on gestational exposure to OPEs and thyroid disruption is limited. Besides, assessment on the safety threshold of OPEs exposure during gestation is especially scarce.
Methods: Based on the Shanghai Minhang Birth Cohort Study, we measured maternal urine concentration of 8 OPE metabolites and THs levels in cord plasma and examined their associations using multiple linear regression and quantile g-computation (QGC) models.
Environ Int
December 2024
MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
Offshore sediment serves as an important sink for traditional organophosphate esters (TOPEs) originating from terrestrial sources. However, the contamination characteristics of novel OPEs (NOPEs) and their hydrolyzed and hydroxylated transformation products (Di- and OH-OPEs) in marine sediment are still unknown. In this study, 34 OPE-associated contaminants were measured in six offshore sediment cores (71 samples) collected from Eastern China.
View Article and Find Full Text PDFAquat Toxicol
December 2024
Department of Developmental Biology, Agharkar Research Institute, Pune, Maharashtra 411004, India. Electronic address:
Tributyl phosphate (TBP), an organophosphate ester (OPE), is heavily used as a solvent in chemical industries, a plasticizer, and to extract radioactive molecules. Thus, widespread uses of TBP in industrialized countries led to the release of TBP and its metabolites, dibutyl phosphate (DBP) and monobutyl phosphate (MBP), in the environment and were detected in human samples. Accumulating these OPEs over time in humans and aquatic animals may develop toxicological effects.
View Article and Find Full Text PDFToxicol Sci
December 2024
Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, H3G 1Y6, Canada.
There is growing evidence that organophosphate esters (OPEs) can act as endocrine-disrupting chemicals. However, only a few studies have assessed the effects of OPE exposure on one of the most important endocrine glands in the body, the adrenal gland. Our aim was to test the effects of a mixture of OPEs detected in Canadian house dust on adrenal function in Sprague Dawley rats.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!