Mimicking the hair surface for neutron reflectometry.

Soft Matter

Division of Surface and Corrosion Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden.

Published: October 2024

The surface of human hair is normally hydrophobic as it is covered by a lipid layer, mainly composed of 18-methyleicosanoic acid (18-MEA). When the hair is damaged, this layer can be partially or fully removed and more hydrophilic, mainly negatively charged surfaces are formed with a wide variety of physical and chemical characteristics. The cosmetic industry is currently embracing the opportunity of increasing the sustainability of their hair-care products whilst improving product performance. To do this, it is vital to have a deeper understanding of the hair surface and how it interacts with hair-care ingredients. This work contributes to this by harnessing the potential of neutron reflectometry (NR) with scattering contrast variation to describe hierarchical adsorption. Three types of hair-mimetic surfaces have been produced: two "healthy hair" models to probe the role of lipid structure, and one "damaged hair" model, to consider the effect of the surface charge. Adsorption of hair-care ingredients has then been studied. The results for these relatively short lipid models indicate that a methyl branch has little effect on adsorption. The "damaged hair" studies, however, reveal the unexpected apparent adsorption of an anionic surfactant to a negative surface. This preferential adsorption of the otherwise solubilised neutral components demonstrates a facile route to selectively deliver a protective film on a damaged hair fibre, without the need for a cationic species. On a more general note, this study also demonstrates the feasibility of using NR to characterize such complex systems.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4sm00784kDOI Listing

Publication Analysis

Top Keywords

hair surface
8
neutron reflectometry
8
hair-care ingredients
8
"damaged hair"
8
surface
5
adsorption
5
mimicking hair
4
surface neutron
4
reflectometry surface
4
surface human
4

Similar Publications

It is widely recognized that the glycocalyx has significant implications in regulating the self-renewal and differentiation of adult stem cells; however, its composition remains poorly understood. Here, we show that the fucose-binding Aleuria aurantia lectin (AAL) binds differentially to basal cells in the stratified epithelium of the human limbus, hair follicle epithelium, and meibomian gland duct. Using fluorescence-activated cell sorting in combination with single-cell transcriptomics, we find that most epithelial progenitor cells and melanocytes in the limbus display low AAL staining (AAL) on their cell surface, an attribute that is gradually lost in epithelial cells as they differentiate into mature corneal cells.

View Article and Find Full Text PDF

Effects of photobiomodulation on human hair dermal papilla cells with various light modes and light parameters.

J Photochem Photobiol B

December 2024

School of information science and technology, Fudan University, 2005th Songhu Rd, Shanghai 200438, China; Zhongshan Fudan Joint Innovation Center, 6th Xiangxing Rd, Zhongshan City, Guangdong Province 528403, China. Electronic address:

Androgenetic alopecia (AGA) is a prevalent hair loss disorder and influenced by genetic, hormonal, and environmental factors. Minoxidil and finasteride have been widely used for treating AGA. However, the side effects associated with these drugs often lead to poor patient compliance.

View Article and Find Full Text PDF

This study investigates the impact of excessive bleaching on the external morphology and internal microstructure of hair, compared to untreated hair. Using scanning electron microscopy (SEM) and transmission electron microscopy (TEM), we observed significant changes in both the surface and internal structures of bleached hair. SEM analysis of normal hair revealed a relatively clean surface with intact cuticle scales, while bleached hair showed brittle, torn scales with a rough appearance.

View Article and Find Full Text PDF

A comprehensive understanding of chemical interactions at the surface of hair represents an important area of research within the cosmetic industry and is essential to obtain new products that exhibit both performance and sustainability. This paper aims at contributing to this research by applying a combination of surface techniques (neutron reflectometry, quartz-crystal microbalance and atomic force microscopy) to study adsorption of surface active ingredients onto hair-mimetic surfaces. The surface of hair is not homogeneous due to chemical and physical damage, and this work focuses on partly damaged hair models, in which both hydrophobic and charged moieties are present.

View Article and Find Full Text PDF

Mammalian skin appendages, such as hair follicles and sweat glands, are essential for both esthetic and functional purposes. Conditions such as burns and ulcers can lead to dysfunction or loss of skin appendages and result in hair loss and dry skin, posing challenges in their regeneration. Existing animal models are insufficient for studying acquired dysfunction of skin appendages without underlying genetic causes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!