Chiral Switches of Tramadol Hydrochloride, a Potential Psychedelic Drug-Past and Future.

ACS Med Chem Lett

Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Rome 00185, Italy.

Published: September 2024

The chiral opioid analgesic tramadol was patented (1962) as a - and -racemates mixture. A first chiral switch led to the (±)--(1,2) racemate, patented and approved as Tramal (1980), preferred over the (+)--(1,2)-enantiomer. Consecutive chiral switches of (±)--tramadol to (+)--(1,2)-tramadol/salts were patented. This Viewpoint calls for developing (+)--(1,2)-tramadol medicines and recognizing tramadol medicines as potential psychedelics to overcome the spreading tramadol crisis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11403737PMC
http://dx.doi.org/10.1021/acsmedchemlett.4c00322DOI Listing

Publication Analysis

Top Keywords

chiral switches
8
chiral
4
tramadol
4
switches tramadol
4
tramadol hydrochloride
4
hydrochloride potential
4
potential psychedelic
4
psychedelic drug-past
4
drug-past future
4
future chiral
4

Similar Publications

Design of a graphene-based chiral trifunctional tunable terahertz metasurface.

Phys Chem Chem Phys

January 2025

College of Mechanics and Engineering Science, Hohai University, Nanjing, 211100, China.

Driven by the pressing demand for integration and miniaturization within the terahertz (THz) spectrum, this research introduces an innovative approach to construct chiral structures using dichroism as the target function. This initiative aims to tackle the prevalent issues of single-functionality, narrow application scope, and intricate design in conventional metasurfaces. The proposed multifunctional tunable metasurface employs a graphene-metal hybrid structure to address the critical constraints found in existing designs.

View Article and Find Full Text PDF

Optically pure monosubstituted [n]paracyclophanes are promising candidates for material synthesis, asymmetric catalysis, and drug discovery. Thus far, only a few catalytic asymmetric synthesis processes have been reported for assessing these stained atropisomers. In this study, we describe a highly enantioselective synthesis of monosubstituted [n]paracyclophanes by combining desymmetrization and kinetic resolution.

View Article and Find Full Text PDF

Efficient circularly polarized luminescence (CPL) optical waveguides have significant potential for advancing photonic and optoelectronic devices. However, the development of CPL optical waveguides materials (OWMs) with low optical loss coefficient remains a considerable challenge. To overcome this, we design and synthesize CPL OWMs based on room-temperature phosphorescent liquid crystalline polymers (LCPs).

View Article and Find Full Text PDF

Asymmetric Synthesis of Azahelicenes via CPA-Catalyzed Kinetic Resolution.

Org Lett

January 2025

Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China.

The azahelicenes are structurally fascinating and practically useful chiral scaffolds, but their synthesis, especially in a catalytically asymmetric manner, is rather challenging. Herein, we report a CPA-catalyzed transfer hydrogenation process, which enables a rapid kinetic resolution of aza[6]helicenes. The established strategy provides facile access to enantioenriched aza[6]helicenes and tetrahydro[6]helicenes from easily available starting materials.

View Article and Find Full Text PDF

Photo-Controllable Förster Resonance Energy Transfer Based on Dynamic Chiral Self-Assembly of Sequence-Defined Amphiphilic Alternating Azopeptoids.

Small

January 2025

Shanghai Key Laboratory of Advanced Polymeric Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China.

Endowing biomimetic sequence-controlled polymers with chiral functionality to construct stimuli-responsive chiral materials offers a promising approach for innovative chiroptical switch, but it remains challenging. Herein, it is reported that the self-assembly of sequence-defined chiral amphiphilic alternating azopeptoids to generate photo-responsive and ultrathin bilayer peptoidosomes with a vesicular thickness of ≈1.50 nm and a diameter of around ≈290 nm.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!