Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The development of new materials for the design of sensitive and responsive sensors has become a crucial research direction. Here, two silver cluster-based polymers (Ag-CBPs), including one-dimensional {[Ag(L1)(CFCO)](CHOH)} chain and two-dimensional {[Ag(L2)(COCF)(HO)(AgCOCF)](HNEt)} film, are designed and used to simulate the human nose, an elegant sensor to smells, to distinguish organic solvents. We study the relationship between the atomic structures of Ag-CBPs determined by x-ray diffraction and the electrical properties in the presence of organic solvents (e.g., methanol and ethanol). The ligands, cations, and the ligated solvent molecules not only play an important role in the self-assembly process of Ag-CBP materials but also determine their physiochemical properties such as the sensing functionality.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11407582 | PMC |
http://dx.doi.org/10.34133/research.0018 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!